You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
9.6 KiB
253 lines
9.6 KiB
#pragma once |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <Filter/Filter.h> |
|
#include <Filter/DerivativeFilter.h> |
|
|
|
// maximum number of sensor instances |
|
#define BARO_MAX_INSTANCES 3 |
|
|
|
// maximum number of drivers. Note that a single driver can provide |
|
// multiple sensor instances |
|
#define BARO_MAX_DRIVERS 3 |
|
|
|
// timeouts for health reporting |
|
#define BARO_TIMEOUT_MS 500 // timeout in ms since last successful read |
|
#define BARO_DATA_CHANGE_TIMEOUT_MS 2000 // timeout in ms since last successful read that involved temperature of pressure changing |
|
|
|
class AP_Baro_Backend; |
|
|
|
class AP_Baro |
|
{ |
|
friend class AP_Baro_Backend; |
|
friend class AP_Baro_SITL; // for access to sensors[] |
|
|
|
public: |
|
AP_Baro(); |
|
|
|
/* Do not allow copies */ |
|
AP_Baro(const AP_Baro &other) = delete; |
|
AP_Baro &operator=(const AP_Baro&) = delete; |
|
|
|
// get singleton |
|
static AP_Baro *get_instance(void) { |
|
return _instance; |
|
} |
|
|
|
// barometer types |
|
typedef enum { |
|
BARO_TYPE_AIR, |
|
BARO_TYPE_WATER |
|
} baro_type_t; |
|
|
|
// initialise the barometer object, loading backend drivers |
|
void init(void); |
|
|
|
// update the barometer object, asking backends to push data to |
|
// the frontend |
|
void update(void); |
|
|
|
// healthy - returns true if sensor and derived altitude are good |
|
bool healthy(void) const { return healthy(_primary); } |
|
bool healthy(uint8_t instance) const { return sensors[instance].healthy && sensors[instance].alt_ok && sensors[instance].calibrated; } |
|
|
|
// check if all baros are healthy - used for SYS_STATUS report |
|
bool all_healthy(void) const; |
|
|
|
// pressure in Pascal. Divide by 100 for millibars or hectopascals |
|
float get_pressure(void) const { return get_pressure(_primary); } |
|
float get_pressure(uint8_t instance) const { return sensors[instance].pressure; } |
|
|
|
// temperature in degrees C |
|
float get_temperature(void) const { return get_temperature(_primary); } |
|
float get_temperature(uint8_t instance) const { return sensors[instance].temperature; } |
|
|
|
// get pressure correction in Pascal. Divide by 100 for millibars or hectopascals |
|
float get_pressure_correction(void) const { return get_pressure_correction(_primary); } |
|
float get_pressure_correction(uint8_t instance) const { return sensors[instance].p_correction; } |
|
|
|
// accumulate a reading on sensors. Some backends without their |
|
// own thread or a timer may need this. |
|
void accumulate(void); |
|
|
|
// calibrate the barometer. This must be called on startup if the |
|
// altitude/climb_rate/acceleration interfaces are ever used |
|
void calibrate(bool save=true); |
|
|
|
// update the barometer calibration to the current pressure. Can |
|
// be used for incremental preflight update of baro |
|
void update_calibration(void); |
|
|
|
// get current altitude in meters relative to altitude at the time |
|
// of the last calibrate() call |
|
float get_altitude(void) const { return get_altitude(_primary); } |
|
float get_altitude(uint8_t instance) const { return sensors[instance].altitude; } |
|
|
|
// get altitude difference in meters relative given a base |
|
// pressure in Pascal |
|
float get_altitude_difference(float base_pressure, float pressure) const; |
|
|
|
// get scale factor required to convert equivalent to true airspeed |
|
float get_EAS2TAS(void); |
|
|
|
// get air density / sea level density - decreases as altitude climbs |
|
float get_air_density_ratio(void); |
|
|
|
// get current climb rate in meters/s. A positive number means |
|
// going up |
|
float get_climb_rate(void); |
|
|
|
// ground temperature in degrees C |
|
// the ground values are only valid after calibration |
|
float get_ground_temperature(void) const; |
|
|
|
// ground pressure in Pascal |
|
// the ground values are only valid after calibration |
|
float get_ground_pressure(void) const { return get_ground_pressure(_primary); } |
|
float get_ground_pressure(uint8_t i) const { return sensors[i].ground_pressure.get(); } |
|
|
|
// set the temperature to be used for altitude calibration. This |
|
// allows an external temperature source (such as a digital |
|
// airspeed sensor) to be used as the temperature source |
|
void set_external_temperature(float temperature); |
|
|
|
// get last time sample was taken (in ms) |
|
uint32_t get_last_update(void) const { return get_last_update(_primary); } |
|
uint32_t get_last_update(uint8_t instance) const { return sensors[instance].last_update_ms; } |
|
|
|
// settable parameters |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
float get_external_temperature(void) const { return get_external_temperature(_primary); }; |
|
float get_external_temperature(const uint8_t instance) const; |
|
|
|
// HIL (and SITL) interface, setting altitude |
|
void setHIL(float altitude_msl); |
|
|
|
// HIL (and SITL) interface, setting pressure, temperature, altitude and climb_rate |
|
// used by Replay |
|
void setHIL(uint8_t instance, float pressure, float temperature, float altitude, float climb_rate, uint32_t last_update_ms); |
|
|
|
// Set the primary baro |
|
void set_primary_baro(uint8_t primary) { _primary_baro.set_and_save(primary); }; |
|
|
|
// Set the type (Air or Water) of a particular instance |
|
void set_type(uint8_t instance, baro_type_t type) { sensors[instance].type = type; }; |
|
|
|
// Get the type (Air or Water) of a particular instance |
|
baro_type_t get_type(uint8_t instance) { return sensors[instance].type; }; |
|
|
|
// HIL variables |
|
struct { |
|
float pressure; |
|
float temperature; |
|
float altitude; |
|
float climb_rate; |
|
uint32_t last_update_ms; |
|
bool updated:1; |
|
bool have_alt:1; |
|
bool have_last_update:1; |
|
} _hil; |
|
|
|
// register a new sensor, claiming a sensor slot. If we are out of |
|
// slots it will panic |
|
uint8_t register_sensor(void); |
|
|
|
// return number of registered sensors |
|
uint8_t num_instances(void) const { return _num_sensors; } |
|
|
|
// enable HIL mode |
|
void set_hil_mode(void) { _hil_mode = true; } |
|
|
|
// set baro drift amount |
|
void set_baro_drift_altitude(float alt) { _alt_offset = alt; } |
|
|
|
// get baro drift amount |
|
float get_baro_drift_offset(void) { return _alt_offset_active; } |
|
|
|
// simple atmospheric model |
|
static void SimpleAtmosphere(const float alt, float &sigma, float &delta, float &theta); |
|
|
|
// simple underwater atmospheric model |
|
static void SimpleUnderWaterAtmosphere(float alt, float &rho, float &delta, float &theta); |
|
|
|
// set a pressure correction from AP_TempCalibration |
|
void set_pressure_correction(uint8_t instance, float p_correction); |
|
|
|
uint8_t get_filter_range() const { return _filter_range; } |
|
|
|
// indicate which bit in LOG_BITMASK indicates baro logging enabled |
|
void set_log_baro_bit(uint32_t bit) { _log_baro_bit = bit; } |
|
bool should_df_log() const; |
|
|
|
private: |
|
// singleton |
|
static AP_Baro *_instance; |
|
|
|
// how many drivers do we have? |
|
uint8_t _num_drivers; |
|
AP_Baro_Backend *drivers[BARO_MAX_DRIVERS]; |
|
|
|
// how many sensors do we have? |
|
uint8_t _num_sensors; |
|
|
|
// what is the primary sensor at the moment? |
|
uint8_t _primary; |
|
|
|
uint32_t _log_baro_bit = -1; |
|
|
|
// bitmask values for GND_PROBE_EXT |
|
enum { |
|
PROBE_BMP085=(1<<0), |
|
PROBE_BMP280=(1<<1), |
|
PROBE_MS5611=(1<<2), |
|
PROBE_MS5607=(1<<3), |
|
PROBE_MS5637=(1<<4), |
|
PROBE_FBM320=(1<<5), |
|
PROBE_DPS280=(1<<6), |
|
PROBE_LPS25H=(1<<7), |
|
PROBE_KELLER=(1<<8), |
|
PROBE_MS5837=(1<<9), |
|
}; |
|
|
|
struct sensor { |
|
baro_type_t type; // 0 for air pressure (default), 1 for water pressure |
|
uint32_t last_update_ms; // last update time in ms |
|
uint32_t last_change_ms; // last update time in ms that included a change in reading from previous readings |
|
bool healthy:1; // true if sensor is healthy |
|
bool alt_ok:1; // true if calculated altitude is ok |
|
bool calibrated:1; // true if calculated calibrated successfully |
|
float pressure; // pressure in Pascal |
|
float temperature; // temperature in degrees C |
|
float altitude; // calculated altitude |
|
AP_Float ground_pressure; |
|
float p_correction; |
|
} sensors[BARO_MAX_INSTANCES]; |
|
|
|
AP_Float _alt_offset; |
|
float _alt_offset_active; |
|
AP_Int8 _primary_baro; // primary chosen by user |
|
AP_Int8 _ext_bus; // bus number for external barometer |
|
float _last_altitude_EAS2TAS; |
|
float _EAS2TAS; |
|
float _external_temperature; |
|
uint32_t _last_external_temperature_ms; |
|
DerivativeFilterFloat_Size7 _climb_rate_filter; |
|
AP_Float _specific_gravity; // the specific gravity of fluid for an ROV 1.00 for freshwater, 1.024 for salt water |
|
AP_Float _user_ground_temperature; // user override of the ground temperature used for EAS2TAS |
|
bool _hil_mode:1; |
|
float _guessed_ground_temperature; // currently ground temperature estimate using our best abailable source |
|
|
|
// when did we last notify the GCS of new pressure reference? |
|
uint32_t _last_notify_ms; |
|
|
|
bool _add_backend(AP_Baro_Backend *backend); |
|
void _probe_i2c_barometers(void); |
|
AP_Int8 _filter_range; // valid value range from mean value |
|
AP_Int32 _baro_probe_ext; |
|
}; |
|
|
|
namespace AP { |
|
AP_Baro &baro(); |
|
};
|
|
|