You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
6.9 KiB
256 lines
6.9 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
BMP085 barometer driver. Based on original code by Jordi Munoz and |
|
Jose Julio |
|
|
|
Substantially modified by Andrew Tridgell |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include <AP_Common.h> |
|
|
|
#include "AP_Baro.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define BMP085_ADDRESS 0x77 //(0xEE >> 1) |
|
#define BMP085_EOC 30 // End of conversion pin PC7 on APM1 |
|
|
|
// the apm2 hardware needs to check the state of the |
|
// chip using a direct IO port |
|
// On APM2 prerelease hw, the data ready port is hooked up to PE7, which |
|
// is not available to the arduino digitalRead function. |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
#define BMP_DATA_READY() hal.gpio->read(BMP085_EOC) |
|
#else |
|
// No EOC connection from Baro |
|
// Use times instead. |
|
// Temp conversion time is 4.5ms |
|
// Pressure conversion time is 25.5ms (for OVERSAMPLING=3) |
|
#define BMP_DATA_READY() (BMP085_State == 0 ? hal.scheduler->millis() > (_last_temp_read_command_time + 5) : hal.scheduler->millis() > (_last_press_read_command_time + 26)) |
|
#endif |
|
|
|
// oversampling 3 gives 26ms conversion time. We then average |
|
#define OVERSAMPLING 3 |
|
|
|
/* |
|
constructor |
|
*/ |
|
AP_Baro_BMP085::AP_Baro_BMP085(AP_Baro &baro) : |
|
AP_Baro_Backend(baro), |
|
_instance(0), |
|
_temp_sum(0), |
|
_press_sum(0), |
|
_count(0), |
|
BMP085_State(0), |
|
ac1(0), ac2(0), ac3(0), b1(0), b2(0), mb(0), mc(0), md(0), |
|
ac4(0), ac5(0), ac6(0), |
|
_retry_time(0) |
|
{ |
|
uint8_t buff[22]; |
|
|
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
hal.scheduler->panic(PSTR("BMP085: unable to get semaphore")); |
|
} |
|
|
|
// End Of Conversion (PC7) input |
|
hal.gpio->pinMode(BMP085_EOC, HAL_GPIO_INPUT); |
|
|
|
// We read the calibration data registers |
|
if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xAA, 22, buff) != 0) { |
|
hal.scheduler->panic(PSTR("BMP085: bad calibration registers")); |
|
} |
|
|
|
ac1 = ((int16_t)buff[0] << 8) | buff[1]; |
|
ac2 = ((int16_t)buff[2] << 8) | buff[3]; |
|
ac3 = ((int16_t)buff[4] << 8) | buff[5]; |
|
ac4 = ((int16_t)buff[6] << 8) | buff[7]; |
|
ac5 = ((int16_t)buff[8] << 8) | buff[9]; |
|
ac6 = ((int16_t)buff[10] << 8) | buff[11]; |
|
b1 = ((int16_t)buff[12] << 8) | buff[13]; |
|
b2 = ((int16_t)buff[14] << 8) | buff[15]; |
|
mb = ((int16_t)buff[16] << 8) | buff[17]; |
|
mc = ((int16_t)buff[18] << 8) | buff[19]; |
|
md = ((int16_t)buff[20] << 8) | buff[21]; |
|
|
|
_last_press_read_command_time = 0; |
|
_last_temp_read_command_time = 0; |
|
|
|
_instance = _frontend.register_sensor(); |
|
|
|
//Send a command to read Temp |
|
Command_ReadTemp(); |
|
|
|
BMP085_State = 0; |
|
|
|
i2c_sem->give(); |
|
} |
|
|
|
// Read the sensor. This is a state machine |
|
// acumulate a new sensor reading |
|
void AP_Baro_BMP085::accumulate(void) |
|
{ |
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
if (!BMP_DATA_READY()) { |
|
return; |
|
} |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(1)) |
|
return; |
|
|
|
if (BMP085_State == 0) { |
|
ReadTemp(); |
|
} else { |
|
if (ReadPress()) { |
|
Calculate(); |
|
} |
|
} |
|
BMP085_State++; |
|
if (BMP085_State == 5) { |
|
BMP085_State = 0; |
|
Command_ReadTemp(); |
|
} else { |
|
Command_ReadPress(); |
|
} |
|
|
|
i2c_sem->give(); |
|
} |
|
|
|
|
|
/* |
|
transfer data to the frontend |
|
*/ |
|
void AP_Baro_BMP085::update(void) |
|
{ |
|
if (_count == 0 && BMP_DATA_READY()) { |
|
accumulate(); |
|
} |
|
if (_count == 0) { |
|
return; |
|
} |
|
|
|
float temperature = 0.1f * _temp_sum / _count; |
|
float pressure = _press_sum / _count; |
|
|
|
_count = 0; |
|
_temp_sum = 0; |
|
_press_sum = 0; |
|
|
|
_copy_to_frontend(_instance, pressure, temperature); |
|
} |
|
|
|
// Send command to Read Pressure |
|
void AP_Baro_BMP085::Command_ReadPress() |
|
{ |
|
// Mode 0x34+(OVERSAMPLING << 6) is osrs=3 when OVERSAMPLING=3 => 25.5ms conversion time |
|
hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, |
|
0x34+(OVERSAMPLING << 6)); |
|
_last_press_read_command_time = hal.scheduler->millis(); |
|
} |
|
|
|
// Read Raw Pressure values |
|
bool AP_Baro_BMP085::ReadPress() |
|
{ |
|
uint8_t buf[3]; |
|
|
|
if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 3, buf) != 0) { |
|
_retry_time = hal.scheduler->millis() + 1000; |
|
hal.i2c->setHighSpeed(false); |
|
return false; |
|
} |
|
|
|
RawPress = (((uint32_t)buf[0] << 16) |
|
| ((uint32_t)buf[1] << 8) |
|
| ((uint32_t)buf[2])) >> (8 - OVERSAMPLING); |
|
return true; |
|
} |
|
|
|
// Send Command to Read Temperature |
|
void AP_Baro_BMP085::Command_ReadTemp() |
|
{ |
|
hal.i2c->writeRegister(BMP085_ADDRESS, 0xF4, 0x2E); |
|
_last_temp_read_command_time = hal.scheduler->millis(); |
|
} |
|
|
|
// Read Raw Temperature values |
|
void AP_Baro_BMP085::ReadTemp() |
|
{ |
|
uint8_t buf[2]; |
|
int32_t _temp_sensor; |
|
|
|
if (hal.i2c->readRegisters(BMP085_ADDRESS, 0xF6, 2, buf) != 0) { |
|
hal.i2c->setHighSpeed(false); |
|
return; |
|
} |
|
_temp_sensor = buf[0]; |
|
_temp_sensor = (_temp_sensor << 8) | buf[1]; |
|
|
|
RawTemp = _temp_sensor; |
|
} |
|
|
|
|
|
// Calculate Temperature and Pressure in real units. |
|
void AP_Baro_BMP085::Calculate() |
|
{ |
|
int32_t x1, x2, x3, b3, b5, b6, p; |
|
uint32_t b4, b7; |
|
int32_t tmp; |
|
|
|
// See Datasheet page 13 for this formulas |
|
// Based also on Jee Labs BMP085 example code. Thanks for share. |
|
// Temperature calculations |
|
x1 = ((int32_t)RawTemp - ac6) * ac5 >> 15; |
|
x2 = ((int32_t) mc << 11) / (x1 + md); |
|
b5 = x1 + x2; |
|
_temp_sum += (b5 + 8) >> 4; |
|
|
|
// Pressure calculations |
|
b6 = b5 - 4000; |
|
x1 = (b2 * (b6 * b6 >> 12)) >> 11; |
|
x2 = ac2 * b6 >> 11; |
|
x3 = x1 + x2; |
|
//b3 = (((int32_t) ac1 * 4 + x3)<<OVERSAMPLING + 2) >> 2; // BAD |
|
//b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0 |
|
tmp = ac1; |
|
tmp = (tmp*4 + x3)<<OVERSAMPLING; |
|
b3 = (tmp+2)/4; |
|
x1 = ac3 * b6 >> 13; |
|
x2 = (b1 * (b6 * b6 >> 12)) >> 16; |
|
x3 = ((x1 + x2) + 2) >> 2; |
|
b4 = (ac4 * (uint32_t) (x3 + 32768)) >> 15; |
|
b7 = ((uint32_t) RawPress - b3) * (50000 >> OVERSAMPLING); |
|
p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2; |
|
|
|
x1 = (p >> 8) * (p >> 8); |
|
x1 = (x1 * 3038) >> 16; |
|
x2 = (-7357 * p) >> 16; |
|
_press_sum += p + ((x1 + x2 + 3791) >> 4); |
|
|
|
_count++; |
|
if (_count == 254) { |
|
_temp_sum *= 0.5f; |
|
_press_sum *= 0.5f; |
|
_count /= 2; |
|
} |
|
}
|
|
|