You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
8.2 KiB
278 lines
8.2 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
void navigate() |
|
{ |
|
// do not navigate with corrupt data |
|
// --------------------------------- |
|
if (g_gps->fix == 0){ |
|
g_gps->new_data = false; |
|
return; |
|
} |
|
|
|
if(next_WP.lat == 0){ |
|
return; |
|
} |
|
|
|
// waypoint distance from plane |
|
// ---------------------------- |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
|
|
if (wp_distance < 0){ |
|
gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0")); |
|
//Serial.println(wp_distance,DEC); |
|
//print_current_waypoints(); |
|
return; |
|
} |
|
|
|
// target_bearing is where we should be heading |
|
// -------------------------------------------- |
|
target_bearing = get_bearing(¤t_loc, &next_WP); |
|
|
|
// nav_bearing will includes xtrac correction |
|
// ------------------------------------------ |
|
nav_bearing = target_bearing; |
|
} |
|
|
|
bool check_missed_wp() |
|
{ |
|
long temp = target_bearing - saved_target_bearing; |
|
temp = wrap_180(temp); |
|
return (abs(temp) > 10000); //we pased the waypoint by 10 ° |
|
} |
|
|
|
#define DIST_ERROR_MAX 1800 |
|
void calc_loiter_nav() |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
pitch_max = 22° (2200) |
|
*/ |
|
|
|
// X ROLL |
|
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST |
|
|
|
// Y PITCH |
|
lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH |
|
|
|
long_error = constrain(long_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error |
|
lat_error = constrain(lat_error, -DIST_ERROR_MAX, DIST_ERROR_MAX); // +- 20m max error |
|
|
|
nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav, 1.0); // X 700 * 2.5 = 1750, |
|
nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav, 1.0); // Y invert lat (for pitch) |
|
|
|
long pmax = g.pitch_max.get(); |
|
nav_lon = constrain(nav_lon, -pmax, pmax); |
|
nav_lat = constrain(nav_lat, -pmax, pmax); |
|
} |
|
|
|
void calc_loiter_output() |
|
{ |
|
// rotate the vector |
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x; |
|
// BAD |
|
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left |
|
//WEST -1000 * 0 - 1000 * -1 = 1000 // roll right - Backwards |
|
//EAST -1000 * 0 - 1000 * 1 = -1000 // roll left - Backwards |
|
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right |
|
|
|
// GOOD |
|
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left |
|
//WEST -1000 * 0 - 1000 * 1 = -1000 // roll right |
|
//EAST -1000 * 0 - 1000 * -1 = 1000 // roll left |
|
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right |
|
|
|
nav_pitch = ((float)nav_lon * -cos_yaw_x + (float)nav_lat * sin_yaw_y); |
|
// BAD |
|
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back |
|
//WEST -1000 * -1 + 1000 * 0 = 1000 // pitch back - Backwards |
|
//EAST -1000 * 1 + 1000 * 0 = -1000 // pitch forward - Backwards |
|
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward |
|
|
|
// GOOD |
|
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back |
|
//WEST -1000 * 1 + 1000 * 0 = -1000 // pitch forward |
|
//EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back |
|
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward |
|
|
|
//limit our copter pitch - this will change if we go to a fully rate limited approach. |
|
|
|
//limit_nav_pitch_roll(g.pitch_max.get()); |
|
} |
|
|
|
void calc_simple_nav() |
|
{ |
|
// no dampening here in SIMPLE mode |
|
nav_lat = constrain((wp_distance * 100), -1800, 1800); // +- 20m max error |
|
// Scale response by kP |
|
nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° |
|
} |
|
|
|
void calc_nav_output() |
|
{ |
|
// get the sin and cos of the bearing error - rotated 90° |
|
sin_nav_y = sin(radians((float)(9000 - bearing_error) / 100)); |
|
cos_nav_x = cos(radians((float)(bearing_error - 9000) / 100)); |
|
|
|
// rotate the vector |
|
nav_roll = (float)nav_lat * cos_nav_x; |
|
nav_pitch = -(float)nav_lat * sin_nav_y; |
|
} |
|
|
|
#define WAYPOINT_SPEED 450 |
|
|
|
#if NAV_TEST == 0 |
|
|
|
void calc_rate_nav() |
|
{ |
|
// calc distance error |
|
nav_lat = min((wp_distance * 100), 1800); // +- 20m max error |
|
|
|
// Scale response by kP |
|
nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° |
|
|
|
// Scale response by kP |
|
//long output = g.pid_nav_wp.kP() * error; |
|
int dampening = g.pid_nav_wp.kD() * (g_gps->ground_speed - last_ground_speed); |
|
|
|
// remember our old speed |
|
last_ground_speed = g_gps->ground_speed; |
|
|
|
// dampen our response |
|
nav_lat -= constrain(dampening, -1800, 1800); // +- 20m max error |
|
} |
|
|
|
#else |
|
|
|
// called after we get GPS read |
|
void calc_rate_nav() |
|
{ |
|
// which direction are we moving? |
|
long target_error = target_bearing - g_gps->ground_course; |
|
target_error = wrap_180(target_error); |
|
|
|
// calc the cos of the error to tell how fast we are moving towards the target in cm |
|
int groundspeed = (float)g_gps->ground_speed * cos(radians((float)target_error/100)); |
|
|
|
// change to rate error |
|
// we want to be going 450cm/s |
|
int error = constrain(WAYPOINT_SPEED - groundspeed, -1000, 1000); |
|
// Scale response by kP |
|
nav_lat = nav_lat + g.pid_nav_wp.get_pid(error, dTnav, 1.0); |
|
nav_lat >>= 1; // divide by two |
|
|
|
// unfiltered: |
|
//nav_lat = g.pid_nav_wp.get_pid(error, dTnav, 1.0); |
|
|
|
//Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, groundspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat); |
|
|
|
// limit our output |
|
nav_lat = constrain(nav_lat, -4000, 4000); // +- max error |
|
} |
|
|
|
#endif |
|
|
|
void calc_bearing_error() |
|
{ |
|
bearing_error = nav_bearing - dcm.yaw_sensor; |
|
bearing_error = wrap_180(bearing_error); |
|
} |
|
|
|
void calc_altitude_error() |
|
{ |
|
altitude_error = next_WP.alt - current_loc.alt; |
|
} |
|
|
|
void calc_altitude_smoothing_error() |
|
{ |
|
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius |
|
target_altitude = next_WP.alt - ((wp_distance * (next_WP.alt - prev_WP.alt)) / (wp_totalDistance - g.waypoint_radius)); |
|
|
|
// stay within a certain range |
|
if(prev_WP.alt > next_WP.alt){ |
|
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); |
|
}else{ |
|
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); |
|
} |
|
|
|
altitude_error = target_altitude - current_loc.alt; |
|
} |
|
|
|
long wrap_360(long error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
long wrap_180(long error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
void update_crosstrack(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following |
|
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / 100)) * wp_distance; // Meters we are off track line |
|
nav_bearing += constrain(crosstrack_error * g.crosstrack_gain, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); |
|
nav_bearing = wrap_360(nav_bearing); |
|
} |
|
} |
|
|
|
long cross_track_test() |
|
{ |
|
long temp = target_bearing - crosstrack_bearing; |
|
temp = wrap_180(temp); |
|
return abs(temp); |
|
} |
|
|
|
void reset_crosstrack() |
|
{ |
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following |
|
} |
|
|
|
long get_altitude_above_home(void) |
|
{ |
|
// This is the altitude above the home location |
|
// The GPS gives us altitude at Sea Level |
|
// if you slope soar, you should see a negative number sometimes |
|
// ------------------------------------------------------------- |
|
return current_loc.alt - home.alt; |
|
} |
|
|
|
// distance is returned in meters |
|
long get_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
//if(loc1->lat == 0 || loc1->lng == 0) |
|
// return -1; |
|
//if(loc2->lat == 0 || loc2->lng == 0) |
|
// return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
|
|
long get_alt_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
return abs(loc1->alt - loc2->alt); |
|
} |
|
|
|
long get_bearing(struct Location *loc1, struct Location *loc2) |
|
{ |
|
long off_x = loc2->lng - loc1->lng; |
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp; |
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
}
|
|
|