You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.7 KiB
247 lines
8.7 KiB
#include "Rover.h" |
|
|
|
void Rover::init_barometer(bool full_calibration) |
|
{ |
|
gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer"); |
|
if (full_calibration) { |
|
barometer.calibrate(); |
|
} else { |
|
barometer.update_calibration(); |
|
} |
|
gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete"); |
|
} |
|
|
|
void Rover::init_sonar(void) |
|
{ |
|
sonar.init(); |
|
} |
|
|
|
// init beacons used for non-gps position estimates |
|
void Rover::init_beacon() |
|
{ |
|
g2.beacon.init(); |
|
} |
|
|
|
// update beacons |
|
void Rover::update_beacon() |
|
{ |
|
g2.beacon.update(); |
|
} |
|
|
|
// read_battery - reads battery voltage and current and invokes failsafe |
|
// should be called at 10hz |
|
void Rover::read_battery(void) |
|
{ |
|
battery.read(); |
|
} |
|
|
|
// read the receiver RSSI as an 8 bit number for MAVLink |
|
// RC_CHANNELS_SCALED message |
|
void Rover::read_receiver_rssi(void) |
|
{ |
|
receiver_rssi = rssi.read_receiver_rssi_uint8(); |
|
} |
|
|
|
// Calibrate compass |
|
void Rover::compass_cal_update() { |
|
if (!hal.util->get_soft_armed()) { |
|
compass.compass_cal_update(); |
|
} |
|
} |
|
|
|
// Accel calibration |
|
|
|
void Rover::accel_cal_update() { |
|
if (hal.util->get_soft_armed()) { |
|
return; |
|
} |
|
ins.acal_update(); |
|
// check if new trim values, and set them float trim_roll, trim_pitch; |
|
float trim_roll, trim_pitch; |
|
if (ins.get_new_trim(trim_roll, trim_pitch)) { |
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); |
|
} |
|
} |
|
|
|
// read the sonars |
|
void Rover::read_sonars(void) |
|
{ |
|
sonar.update(); |
|
|
|
if (sonar.status(0) == RangeFinder::RangeFinder_NotConnected) { |
|
// this makes it possible to disable sonar at runtime |
|
return; |
|
} |
|
|
|
if (sonar.has_data(1)) { |
|
// we have two sonars |
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0); |
|
obstacle.sonar2_distance_cm = sonar.distance_cm(1); |
|
if (obstacle.sonar1_distance_cm < static_cast<uint16_t>(g.sonar_trigger_cm) && |
|
obstacle.sonar1_distance_cm < static_cast<uint16_t>(obstacle.sonar2_distance_cm)) { |
|
// we have an object on the left |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.sonar_debounce) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar1 obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.sonar1_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.sonar_turn_angle; |
|
} else if (obstacle.sonar2_distance_cm < static_cast<uint16_t>(g.sonar_trigger_cm)) { |
|
// we have an object on the right |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.sonar_debounce) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar2 obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.sonar2_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = -g.sonar_turn_angle; |
|
} |
|
} else { |
|
// we have a single sonar |
|
obstacle.sonar1_distance_cm = sonar.distance_cm(0); |
|
obstacle.sonar2_distance_cm = 0; |
|
if (obstacle.sonar1_distance_cm < static_cast<uint16_t>(g.sonar_trigger_cm)) { |
|
// obstacle detected in front |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.sonar_debounce) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar obstacle %u cm", |
|
static_cast<uint32_t>(obstacle.sonar1_distance_cm)); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.sonar_turn_angle; |
|
} |
|
} |
|
|
|
Log_Write_Sonar(); |
|
|
|
// no object detected - reset after the turn time |
|
if (obstacle.detected_count >= g.sonar_debounce && |
|
AP_HAL::millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Obstacle passed"); |
|
obstacle.detected_count = 0; |
|
obstacle.turn_angle = 0; |
|
} |
|
} |
|
|
|
/* |
|
update AP_Button |
|
*/ |
|
void Rover::button_update(void) |
|
{ |
|
button.update(); |
|
} |
|
|
|
// update error mask of sensors and subsystems. The mask |
|
// uses the MAV_SYS_STATUS_* values from mavlink. If a bit is set |
|
// then it indicates that the sensor or subsystem is present but |
|
// not functioning correctly. |
|
void Rover::update_sensor_status_flags(void) |
|
{ |
|
// default sensors present |
|
control_sensors_present = MAVLINK_SENSOR_PRESENT_DEFAULT; |
|
|
|
// first what sensors/controllers we have |
|
if (g.compass_enabled) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; // compass present |
|
} |
|
if (gps.status() > AP_GPS::NO_GPS) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS; |
|
} |
|
|
|
if (rover.DataFlash.logging_present()) { // primary logging only (usually File) |
|
control_sensors_present |= MAV_SYS_STATUS_LOGGING; |
|
} |
|
|
|
|
|
// all present sensors enabled by default except rate control, attitude stabilization, yaw, altitude, position control and motor output which we will set individually |
|
control_sensors_enabled = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL & |
|
~MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION & |
|
~MAV_SYS_STATUS_SENSOR_YAW_POSITION & |
|
~MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL & |
|
~MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS & |
|
~MAV_SYS_STATUS_LOGGING); |
|
|
|
switch (control_mode) { |
|
case MANUAL: |
|
case HOLD: |
|
break; |
|
|
|
case LEARNING: |
|
case STEERING: |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation |
|
break; |
|
|
|
case AUTO: |
|
case RTL: |
|
case GUIDED: |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ANGULAR_RATE_CONTROL; // 3D angular rate control |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ATTITUDE_STABILIZATION; // attitude stabilisation |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_YAW_POSITION; // yaw position |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_XY_POSITION_CONTROL; // X/Y position control |
|
break; |
|
|
|
case INITIALISING: |
|
break; |
|
} |
|
|
|
if (rover.DataFlash.logging_enabled()) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; |
|
} |
|
|
|
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) |
|
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; |
|
} |
|
|
|
// default to all healthy except compass and gps which we set individually |
|
control_sensors_health = control_sensors_present & (~MAV_SYS_STATUS_SENSOR_3D_MAG & ~MAV_SYS_STATUS_SENSOR_GPS); |
|
if (g.compass_enabled && compass.healthy(0) && ahrs.use_compass()) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; |
|
} |
|
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS; |
|
} |
|
if (!ins.get_gyro_health_all() || !ins.gyro_calibrated_ok_all()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_GYRO; |
|
} |
|
if (!ins.get_accel_health_all()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_SENSOR_3D_ACCEL; |
|
} |
|
|
|
if (ahrs.initialised() && !ahrs.healthy()) { |
|
// AHRS subsystem is unhealthy |
|
control_sensors_health &= ~MAV_SYS_STATUS_AHRS; |
|
} |
|
|
|
if (sonar.num_sensors() > 0) { |
|
control_sensors_present |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
if (g.sonar_trigger_cm > 0) { |
|
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
} |
|
if (sonar.has_data(0)) { |
|
control_sensors_health |= MAV_SYS_STATUS_SENSOR_LASER_POSITION; |
|
} |
|
} |
|
|
|
if (rover.DataFlash.logging_failed()) { |
|
control_sensors_health &= ~MAV_SYS_STATUS_LOGGING; |
|
} |
|
|
|
if (AP_Notify::flags.initialising) { |
|
// while initialising the gyros and accels are not enabled |
|
control_sensors_enabled &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); |
|
control_sensors_health &= ~(MAV_SYS_STATUS_SENSOR_3D_GYRO | MAV_SYS_STATUS_SENSOR_3D_ACCEL); |
|
} |
|
#if FRSKY_TELEM_ENABLED == ENABLED |
|
// give mask of error flags to Frsky_Telemetry |
|
frsky_telemetry.update_sensor_status_flags(~control_sensors_health & control_sensors_enabled & control_sensors_present); |
|
#endif |
|
}
|
|
|