You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
585 lines
27 KiB
585 lines
27 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 |
|
#include "AP_NavEKF2.h" |
|
#include "AP_NavEKF2_core.h" |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Vehicle/AP_Vehicle.h> |
|
|
|
#include <stdio.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
/******************************************************** |
|
* OPT FLOW AND RANGE FINDER * |
|
********************************************************/ |
|
|
|
// Read the range finder and take new measurements if available |
|
// Apply a median filter |
|
void NavEKF2_core::readRangeFinder(void) |
|
{ |
|
uint8_t midIndex; |
|
uint8_t maxIndex; |
|
uint8_t minIndex; |
|
// get theoretical correct range when the vehicle is on the ground |
|
rngOnGnd = frontend->_rng.ground_clearance_cm() * 0.01f; |
|
|
|
// read range finder at 20Hz |
|
// TODO better way of knowing if it has new data |
|
if ((imuSampleTime_ms - lastRngMeasTime_ms) > 50) { |
|
|
|
// reset the timer used to control the measurement rate |
|
lastRngMeasTime_ms = imuSampleTime_ms; |
|
|
|
// store samples and sample time into a ring buffer if valid |
|
if (frontend->_rng.status() == RangeFinder::RangeFinder_Good) { |
|
rngMeasIndex ++; |
|
if (rngMeasIndex > 2) { |
|
rngMeasIndex = 0; |
|
} |
|
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms - 25; |
|
storedRngMeas[rngMeasIndex] = frontend->_rng.distance_cm() * 0.01f; |
|
} |
|
|
|
// check for three fresh samples |
|
bool sampleFresh[3]; |
|
for (uint8_t index = 0; index <= 2; index++) { |
|
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500; |
|
} |
|
|
|
// find the median value if we have three fresh samples |
|
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) { |
|
if (storedRngMeas[0] > storedRngMeas[1]) { |
|
minIndex = 1; |
|
maxIndex = 0; |
|
} else { |
|
maxIndex = 0; |
|
minIndex = 1; |
|
} |
|
if (storedRngMeas[2] > storedRngMeas[maxIndex]) { |
|
midIndex = maxIndex; |
|
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) { |
|
midIndex = minIndex; |
|
} else { |
|
midIndex = 2; |
|
} |
|
rangeDataNew.time_ms = storedRngMeasTime_ms[midIndex]; |
|
// limit the measured range to be no less than the on-ground range |
|
rangeDataNew.rng = MAX(storedRngMeas[midIndex],rngOnGnd); |
|
rngValidMeaTime_ms = imuSampleTime_ms; |
|
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it |
|
storedRange.push(rangeDataNew); |
|
} else if (!takeOffDetected) { |
|
// before takeoff we assume on-ground range value if there is no data |
|
rangeDataNew.time_ms = imuSampleTime_ms; |
|
rangeDataNew.rng = rngOnGnd; |
|
rngValidMeaTime_ms = imuSampleTime_ms; |
|
// write data to buffer with time stamp to be fused when the fusion time horizon catches up with it |
|
storedRange.push(rangeDataNew); |
|
} |
|
} |
|
} |
|
|
|
// write the raw optical flow measurements |
|
// this needs to be called externally. |
|
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas) |
|
{ |
|
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update |
|
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions: |
|
// A positive X rate is produced by a positive sensor rotation about the X axis |
|
// A positive Y rate is produced by a positive sensor rotation about the Y axis |
|
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a |
|
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate |
|
flowMeaTime_ms = imuSampleTime_ms; |
|
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data |
|
// reset the accumulated body delta angle and time |
|
// don't do the calculation if not enough time lapsed for a reliable body rate measurement |
|
if (delTimeOF > 0.01f) { |
|
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f); |
|
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f); |
|
delAngBodyOF.zero(); |
|
delTimeOF = 0.0f; |
|
} |
|
// check for takeoff if relying on optical flow and zero measurements until takeoff detected |
|
// if we haven't taken off - constrain position and velocity states |
|
if (frontend->_fusionModeGPS == 3) { |
|
detectOptFlowTakeoff(); |
|
} |
|
// calculate rotation matrices at mid sample time for flow observations |
|
stateStruct.quat.rotation_matrix(Tbn_flow); |
|
Tnb_flow = Tbn_flow.transposed(); |
|
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data) |
|
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) { |
|
// correct flow sensor rates for bias |
|
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x; |
|
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y; |
|
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator |
|
// note correction for different axis and sign conventions used by the px4flow sensor |
|
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec) |
|
// write flow rate measurements corrected for body rates |
|
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x; |
|
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y; |
|
// record time last observation was received so we can detect loss of data elsewhere |
|
flowValidMeaTime_ms = imuSampleTime_ms; |
|
// estimate sample time of the measurement |
|
ofDataNew.time_ms = imuSampleTime_ms - frontend->_flowDelay_ms - frontend->flowTimeDeltaAvg_ms/2; |
|
// Correct for the average intersampling delay due to the filter updaterate |
|
ofDataNew.time_ms -= localFilterTimeStep_ms/2; |
|
// Prevent time delay exceeding age of oldest IMU data in the buffer |
|
ofDataNew.time_ms = MAX(ofDataNew.time_ms,imuDataDelayed.time_ms); |
|
// Save data to buffer |
|
storedOF.push(ofDataNew); |
|
// Check for data at the fusion time horizon |
|
flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms); |
|
} |
|
} |
|
|
|
|
|
/******************************************************** |
|
* MAGNETOMETER * |
|
********************************************************/ |
|
|
|
// check for new magnetometer data and update store measurements if available |
|
void NavEKF2_core::readMagData() |
|
{ |
|
if (!_ahrs->get_compass()) { |
|
allMagSensorsFailed = true; |
|
return; |
|
} |
|
// If we are a vehicle with a sideslip constraint to aid yaw estimation and we have timed out on our last avialable |
|
// magnetometer, then declare the magnetometers as failed for this flight |
|
uint8_t maxCount = _ahrs->get_compass()->get_count(); |
|
if (allMagSensorsFailed || (magTimeout && assume_zero_sideslip() && magSelectIndex >= maxCount-1 && inFlight)) { |
|
allMagSensorsFailed = true; |
|
return; |
|
} |
|
|
|
// do not accept new compass data faster than 14Hz (nominal rate is 10Hz) to prevent high processor loading |
|
// because magnetometer fusion is an expensive step and we could overflow the FIFO buffer |
|
if (use_compass() && _ahrs->get_compass()->last_update_usec() - lastMagUpdate_us > 70000) { |
|
frontend->logging.log_compass = true; |
|
|
|
// If the magnetometer has timed out (been rejected too long) we find another magnetometer to use if available |
|
// Don't do this if we are on the ground because there can be magnetic interference and we need to know if there is a problem |
|
// before taking off. Don't do this within the first 30 seconds from startup because the yaw error could be due to large yaw gyro bias affsets |
|
if (magTimeout && (maxCount > 1) && !onGround && imuSampleTime_ms - ekfStartTime_ms > 30000) { |
|
|
|
// search through the list of magnetometers |
|
for (uint8_t i=1; i<maxCount; i++) { |
|
uint8_t tempIndex = magSelectIndex + i; |
|
// loop back to the start index if we have exceeded the bounds |
|
if (tempIndex >= maxCount) { |
|
tempIndex -= maxCount; |
|
} |
|
// if the magnetometer is allowed to be used for yaw and has a different index, we start using it |
|
if (_ahrs->get_compass()->use_for_yaw(tempIndex) && tempIndex != magSelectIndex) { |
|
magSelectIndex = tempIndex; |
|
hal.console->printf("EKF2 IMU%u switching to compass %u\n",(unsigned)imu_index,magSelectIndex); |
|
// reset the timeout flag and timer |
|
magTimeout = false; |
|
lastHealthyMagTime_ms = imuSampleTime_ms; |
|
// zero the learned magnetometer bias states |
|
stateStruct.body_magfield.zero(); |
|
// clear the measurement buffer |
|
storedMag.reset(); |
|
} |
|
} |
|
} |
|
|
|
// detect changes to magnetometer offset parameters and reset states |
|
Vector3f nowMagOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex); |
|
bool changeDetected = lastMagOffsetsValid && (nowMagOffsets != lastMagOffsets); |
|
if (changeDetected) { |
|
// zero the learned magnetometer bias states |
|
stateStruct.body_magfield.zero(); |
|
// clear the measurement buffer |
|
storedMag.reset(); |
|
} |
|
lastMagOffsets = nowMagOffsets; |
|
lastMagOffsetsValid = true; |
|
|
|
// store time of last measurement update |
|
lastMagUpdate_us = _ahrs->get_compass()->last_update_usec(magSelectIndex); |
|
|
|
// estimate of time magnetometer measurement was taken, allowing for delays |
|
magDataNew.time_ms = imuSampleTime_ms - frontend->magDelay_ms; |
|
|
|
// Correct for the average intersampling delay due to the filter updaterate |
|
magDataNew.time_ms -= localFilterTimeStep_ms/2; |
|
|
|
// read compass data and scale to improve numerical conditioning |
|
magDataNew.mag = _ahrs->get_compass()->get_field(magSelectIndex) * 0.001f; |
|
|
|
// check for consistent data between magnetometers |
|
consistentMagData = _ahrs->get_compass()->consistent(); |
|
|
|
// save magnetometer measurement to buffer to be fused later |
|
storedMag.push(magDataNew); |
|
} |
|
} |
|
|
|
/******************************************************** |
|
* Inertial Measurements * |
|
********************************************************/ |
|
|
|
/* |
|
* Read IMU delta angle and delta velocity measurements and downsample to 100Hz |
|
* for storage in the data buffers used by the EKF. If the IMU data arrives at |
|
* lower rate than 100Hz, then no downsampling or upsampling will be performed. |
|
* Downsampling is done using a method that does not introduce coning or sculling |
|
* errors. |
|
*/ |
|
void NavEKF2_core::readIMUData() |
|
{ |
|
const AP_InertialSensor &ins = _ahrs->get_ins(); |
|
|
|
// average IMU sampling rate |
|
dtIMUavg = ins.get_loop_delta_t(); |
|
|
|
// the imu sample time is used as a common time reference throughout the filter |
|
imuSampleTime_ms = AP_HAL::millis(); |
|
|
|
// use the nominated imu or primary if not available |
|
if (ins.use_accel(imu_index)) { |
|
readDeltaVelocity(imu_index, imuDataNew.delVel, imuDataNew.delVelDT); |
|
} else { |
|
readDeltaVelocity(ins.get_primary_accel(), imuDataNew.delVel, imuDataNew.delVelDT); |
|
} |
|
|
|
// Get delta angle data from primary gyro or primary if not available |
|
if (ins.use_gyro(imu_index)) { |
|
readDeltaAngle(imu_index, imuDataNew.delAng); |
|
} else { |
|
readDeltaAngle(ins.get_primary_gyro(), imuDataNew.delAng); |
|
} |
|
imuDataNew.delAngDT = MAX(ins.get_delta_angle_dt(imu_index),1.0e-4f); |
|
|
|
// Get current time stamp |
|
imuDataNew.time_ms = imuSampleTime_ms; |
|
|
|
// remove gyro scale factor errors |
|
imuDataNew.delAng.x = imuDataNew.delAng.x * stateStruct.gyro_scale.x; |
|
imuDataNew.delAng.y = imuDataNew.delAng.y * stateStruct.gyro_scale.y; |
|
imuDataNew.delAng.z = imuDataNew.delAng.z * stateStruct.gyro_scale.z; |
|
|
|
// remove sensor bias errors |
|
imuDataNew.delAng -= stateStruct.gyro_bias * (imuDataNew.delAngDT / dtEkfAvg); |
|
imuDataNew.delVel.z -= stateStruct.accel_zbias * (imuDataNew.delVelDT / dtEkfAvg); |
|
|
|
// Accumulate the measurement time interval for the delta velocity and angle data |
|
imuDataDownSampledNew.delAngDT += imuDataNew.delAngDT; |
|
imuDataDownSampledNew.delVelDT += imuDataNew.delVelDT; |
|
|
|
// Rotate quaternon atitude from previous to new and normalise. |
|
// Accumulation using quaternions prevents introduction of coning errors due to downsampling |
|
Quaternion deltaQuat; |
|
deltaQuat.rotate(imuDataNew.delAng); |
|
imuQuatDownSampleNew = imuQuatDownSampleNew*deltaQuat; |
|
imuQuatDownSampleNew.normalize(); |
|
|
|
// Rotate the accumulated delta velocity into the new frame of reference created by the latest delta angle |
|
// This prevents introduction of sculling errors due to downsampling |
|
Matrix3f deltaRotMat; |
|
deltaQuat.inverse().rotation_matrix(deltaRotMat); |
|
imuDataDownSampledNew.delVel = deltaRotMat*imuDataDownSampledNew.delVel; |
|
|
|
// accumulate the latest delta velocity |
|
imuDataDownSampledNew.delVel += imuDataNew.delVel; |
|
|
|
// Keep track of the number of IMU frames since the last state prediction |
|
framesSincePredict++; |
|
|
|
// If 10msec has elapsed, and the frontend has allowed us to start a new predict cycle, then store the accumulated IMU data |
|
// to be used by the state prediction, ignoring the frontend permission if more than 20msec has lapsed |
|
if ((dtIMUavg*(float)framesSincePredict >= 0.01f && startPredictEnabled) || (dtIMUavg*(float)framesSincePredict >= 0.02f)) { |
|
// convert the accumulated quaternion to an equivalent delta angle |
|
imuQuatDownSampleNew.to_axis_angle(imuDataDownSampledNew.delAng); |
|
// Time stamp the data |
|
imuDataDownSampledNew.time_ms = imuSampleTime_ms; |
|
// Write data to the FIFO IMU buffer |
|
storedIMU.push_youngest_element(imuDataDownSampledNew); |
|
// zero the accumulated IMU data and quaternion |
|
imuDataDownSampledNew.delAng.zero(); |
|
imuDataDownSampledNew.delVel.zero(); |
|
imuDataDownSampledNew.delAngDT = 0.0f; |
|
imuDataDownSampledNew.delVelDT = 0.0f; |
|
imuQuatDownSampleNew[0] = 1.0f; |
|
imuQuatDownSampleNew[3] = imuQuatDownSampleNew[2] = imuQuatDownSampleNew[1] = 0.0f; |
|
// reset the counter used to let the frontend know how many frames have elapsed since we started a new update cycle |
|
framesSincePredict = 0; |
|
// set the flag to let the filter know it has new IMU data nad needs to run |
|
runUpdates = true; |
|
} else { |
|
// we don't have new IMU data in the buffer so don't run filter updates on this time step |
|
runUpdates = false; |
|
} |
|
|
|
// extract the oldest available data from the FIFO buffer |
|
imuDataDelayed = storedIMU.pop_oldest_element(); |
|
float minDT = 0.1f*dtEkfAvg; |
|
imuDataDelayed.delAngDT = MAX(imuDataDelayed.delAngDT,minDT); |
|
imuDataDelayed.delVelDT = MAX(imuDataDelayed.delVelDT,minDT); |
|
|
|
} |
|
|
|
// read the delta velocity and corresponding time interval from the IMU |
|
// return false if data is not available |
|
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) { |
|
const AP_InertialSensor &ins = _ahrs->get_ins(); |
|
|
|
if (ins_index < ins.get_accel_count()) { |
|
ins.get_delta_velocity(ins_index,dVel); |
|
dVel_dt = MAX(ins.get_delta_velocity_dt(ins_index),1.0e-4f); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/******************************************************** |
|
* Global Position Measurement * |
|
********************************************************/ |
|
|
|
// check for new valid GPS data and update stored measurement if available |
|
void NavEKF2_core::readGpsData() |
|
{ |
|
// check for new GPS data |
|
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer |
|
if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) { |
|
if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
// report GPS fix status |
|
gpsCheckStatus.bad_fix = false; |
|
|
|
// store fix time from previous read |
|
secondLastGpsTime_ms = lastTimeGpsReceived_ms; |
|
|
|
// get current fix time |
|
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms(); |
|
|
|
// estimate when the GPS fix was valid, allowing for GPS processing and other delays |
|
// ideally we should be using a timing signal from the GPS receiver to set this time |
|
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend->_gpsDelay_ms; |
|
|
|
// Correct for the average intersampling delay due to the filter updaterate |
|
gpsDataNew.time_ms -= localFilterTimeStep_ms/2; |
|
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer |
|
gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms); |
|
|
|
// read the NED velocity from the GPS |
|
gpsDataNew.vel = _ahrs->get_gps().velocity(); |
|
|
|
// Use the speed and position accuracy from the GPS if available, otherwise set it to zero. |
|
// Apply a decaying envelope filter with a 5 second time constant to the raw accuracy data |
|
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); |
|
gpsSpdAccuracy *= (1.0f - alpha); |
|
float gpsSpdAccRaw; |
|
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) { |
|
gpsSpdAccuracy = 0.0f; |
|
} else { |
|
gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw); |
|
gpsSpdAccuracy = MIN(gpsSpdAccuracy,50.0f); |
|
} |
|
gpsPosAccuracy *= (1.0f - alpha); |
|
float gpsPosAccRaw; |
|
if (!_ahrs->get_gps().horizontal_accuracy(gpsPosAccRaw)) { |
|
gpsPosAccuracy = 0.0f; |
|
} else { |
|
gpsPosAccuracy = MAX(gpsPosAccuracy,gpsPosAccRaw); |
|
gpsPosAccuracy = MIN(gpsPosAccuracy,100.0f); |
|
} |
|
|
|
// check if we have enough GPS satellites and increase the gps noise scaler if we don't |
|
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { |
|
gpsNoiseScaler = 1.0f; |
|
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) { |
|
gpsNoiseScaler = 1.4f; |
|
} else { // <= 4 satellites or in constant position mode |
|
gpsNoiseScaler = 2.0f; |
|
} |
|
|
|
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly |
|
if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0) { |
|
useGpsVertVel = true; |
|
} else { |
|
useGpsVertVel = false; |
|
} |
|
|
|
// Monitor quality of the GPS velocity data before and after alignment using separate checks |
|
if (PV_AidingMode != AID_ABSOLUTE) { |
|
// Pre-alignment checks |
|
gpsGoodToAlign = calcGpsGoodToAlign(); |
|
} else { |
|
// Post-alignment checks |
|
calcGpsGoodForFlight(); |
|
} |
|
|
|
// Read the GPS locaton in WGS-84 lat,long,height coordinates |
|
const struct Location &gpsloc = _ahrs->get_gps().location(); |
|
|
|
// Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed |
|
if (gpsGoodToAlign && !validOrigin) { |
|
setOrigin(); |
|
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly |
|
alignMagStateDeclination(); |
|
// Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum' |
|
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt; |
|
} |
|
|
|
// convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin |
|
if (validOrigin) { |
|
gpsDataNew.pos = location_diff(EKF_origin, gpsloc); |
|
gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt); |
|
storedGPS.push(gpsDataNew); |
|
// declare GPS available for use |
|
gpsNotAvailable = false; |
|
} |
|
|
|
frontend->logging.log_gps = true; |
|
|
|
} else { |
|
// report GPS fix status |
|
gpsCheckStatus.bad_fix = true; |
|
} |
|
} |
|
|
|
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon |
|
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero |
|
// and use the last estimated position as a synthetic GPS position |
|
|
|
// check if we can use opticalflow as a backup |
|
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); |
|
|
|
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift |
|
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms; |
|
|
|
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode |
|
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; |
|
|
|
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out |
|
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { |
|
|
|
// Let other processes know that GPS is not available and that a timeout has occurred |
|
posTimeout = true; |
|
velTimeout = true; |
|
gpsNotAvailable = true; |
|
|
|
// If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation |
|
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. |
|
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. |
|
if (PV_AidingMode == AID_ABSOLUTE && !useAirspeed() && !assume_zero_sideslip()) { |
|
if (optFlowBackupAvailable) { |
|
// we can do optical flow only nav |
|
frontend->_fusionModeGPS = 3; |
|
PV_AidingMode = AID_RELATIVE; |
|
} else { |
|
// store the current position |
|
lastKnownPositionNE.x = stateStruct.position.x; |
|
lastKnownPositionNE.y = stateStruct.position.y; |
|
|
|
// put the filter into constant position mode |
|
PV_AidingMode = AID_NONE; |
|
|
|
// Reset the velocity and position states |
|
ResetVelocity(); |
|
ResetPosition(); |
|
|
|
// Reset the normalised innovation to avoid false failing bad fusion tests |
|
velTestRatio = 0.0f; |
|
posTestRatio = 0.0f; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// read the delta angle and corresponding time interval from the IMU |
|
// return false if data is not available |
|
bool NavEKF2_core::readDeltaAngle(uint8_t ins_index, Vector3f &dAng) { |
|
const AP_InertialSensor &ins = _ahrs->get_ins(); |
|
|
|
if (ins_index < ins.get_gyro_count()) { |
|
ins.get_delta_angle(ins_index,dAng); |
|
frontend->logging.log_imu = true; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
/******************************************************** |
|
* Height Measurements * |
|
********************************************************/ |
|
|
|
// check for new pressure altitude measurement data and update stored measurement if available |
|
void NavEKF2_core::readBaroData() |
|
{ |
|
// check to see if baro measurement has changed so we know if a new measurement has arrived |
|
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer |
|
if (frontend->_baro.get_last_update() - lastBaroReceived_ms > 70) { |
|
frontend->logging.log_baro = true; |
|
|
|
baroDataNew.hgt = frontend->_baro.get_altitude(); |
|
|
|
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff |
|
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent |
|
if (isAiding && getTakeoffExpected()) { |
|
baroDataNew.hgt = MAX(baroDataNew.hgt, meaHgtAtTakeOff); |
|
} |
|
|
|
// time stamp used to check for new measurement |
|
lastBaroReceived_ms = frontend->_baro.get_last_update(); |
|
|
|
// estimate of time height measurement was taken, allowing for delays |
|
baroDataNew.time_ms = lastBaroReceived_ms - frontend->_hgtDelay_ms; |
|
|
|
// Correct for the average intersampling delay due to the filter updaterate |
|
baroDataNew.time_ms -= localFilterTimeStep_ms/2; |
|
|
|
// Prevent time delay exceeding age of oldest IMU data in the buffer |
|
baroDataNew.time_ms = MAX(baroDataNew.time_ms,imuDataDelayed.time_ms); |
|
|
|
// save baro measurement to buffer to be fused later |
|
storedBaro.push(baroDataNew); |
|
} |
|
} |
|
|
|
// calculate filtered offset between baro height measurement and EKF height estimate |
|
// offset should be subtracted from baro measurement to match filter estimate |
|
// offset is used to enable reversion to baro if alternate height data sources fail |
|
void NavEKF2_core::calcFiltBaroOffset() |
|
{ |
|
// Apply a first order LPF with spike protection |
|
baroHgtOffset += 0.1f * constrain_float(baroDataDelayed.hgt + stateStruct.position.z - baroHgtOffset, -5.0f, 5.0f); |
|
} |
|
|
|
/******************************************************** |
|
* Air Speed Measurements * |
|
********************************************************/ |
|
|
|
// check for new airspeed data and update stored measurements if available |
|
void NavEKF2_core::readAirSpdData() |
|
{ |
|
// if airspeed reading is valid and is set by the user to be used and has been updated then |
|
// we take a new reading, convert from EAS to TAS and set the flag letting other functions |
|
// know a new measurement is available |
|
const AP_Airspeed *aspeed = _ahrs->get_airspeed(); |
|
if (aspeed && |
|
aspeed->use() && |
|
aspeed->last_update_ms() != timeTasReceived_ms) { |
|
tasDataNew.tas = aspeed->get_airspeed() * aspeed->get_EAS2TAS(); |
|
timeTasReceived_ms = aspeed->last_update_ms(); |
|
tasDataNew.time_ms = timeTasReceived_ms - frontend->tasDelay_ms; |
|
|
|
// Correct for the average intersampling delay due to the filter update rate |
|
tasDataNew.time_ms -= localFilterTimeStep_ms/2; |
|
|
|
// Save data into the buffer to be fused when the fusion time horizon catches up with it |
|
storedTAS.push(tasDataNew); |
|
} |
|
// Check the buffer for measurements that have been overtaken by the fusion time horizon and need to be fused |
|
tasDataToFuse = storedTAS.recall(tasDataDelayed,imuDataDelayed.time_ms); |
|
} |
|
|
|
#endif // HAL_CPU_CLASS
|
|
|