You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
221 lines
5.3 KiB
221 lines
5.3 KiB
#include <AP_HAL/AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
|
|
#include "AP_HAL_SITL.h" |
|
#include "Scheduler.h" |
|
#include "UARTDriver.h" |
|
#include <sys/time.h> |
|
#include <fenv.h> |
|
|
|
using namespace HALSITL; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
AP_HAL::Proc Scheduler::_failsafe = nullptr; |
|
volatile bool Scheduler::_timer_suspended = false; |
|
volatile bool Scheduler::_timer_event_missed = false; |
|
|
|
AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; |
|
uint8_t Scheduler::_num_timer_procs = 0; |
|
bool Scheduler::_in_timer_proc = false; |
|
|
|
AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; |
|
uint8_t Scheduler::_num_io_procs = 0; |
|
bool Scheduler::_in_io_proc = false; |
|
|
|
Scheduler::Scheduler(SITL_State *sitlState) : |
|
_sitlState(sitlState), |
|
_stopped_clock_usec(0) |
|
{ |
|
} |
|
|
|
void Scheduler::init() |
|
{ |
|
} |
|
|
|
void Scheduler::delay_microseconds(uint16_t usec) |
|
{ |
|
uint64_t start = AP_HAL::micros64(); |
|
do { |
|
uint64_t dtime = AP_HAL::micros64() - start; |
|
if (dtime >= usec) { |
|
break; |
|
} |
|
_sitlState->wait_clock(start + usec); |
|
} while (true); |
|
} |
|
|
|
void Scheduler::delay(uint16_t ms) |
|
{ |
|
while (ms > 0) { |
|
delay_microseconds(1000); |
|
ms--; |
|
if (_min_delay_cb_ms <= ms) { |
|
if (_delay_cb) { |
|
_delay_cb(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void Scheduler::register_delay_callback(AP_HAL::Proc proc, |
|
uint16_t min_time_ms) |
|
{ |
|
_delay_cb = proc; |
|
_min_delay_cb_ms = min_time_ms; |
|
} |
|
|
|
void Scheduler::register_timer_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { |
|
_timer_proc[_num_timer_procs] = proc; |
|
_num_timer_procs++; |
|
} |
|
} |
|
|
|
void Scheduler::register_io_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { |
|
_io_proc[_num_io_procs] = proc; |
|
_num_io_procs++; |
|
} |
|
} |
|
|
|
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) |
|
{ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void Scheduler::suspend_timer_procs() { |
|
_timer_suspended = true; |
|
} |
|
|
|
void Scheduler::resume_timer_procs() { |
|
_timer_suspended = false; |
|
if (_timer_event_missed) { |
|
_timer_event_missed = false; |
|
_run_timer_procs(false); |
|
} |
|
} |
|
|
|
void Scheduler::system_initialized() { |
|
if (_initialized) { |
|
AP_HAL::panic( |
|
"PANIC: scheduler system initialized called more than once"); |
|
} |
|
int exceptions = FE_OVERFLOW | FE_DIVBYZERO; |
|
#ifndef __i386__ |
|
// i386 with gcc doesn't work with FE_INVALID |
|
exceptions |= FE_INVALID; |
|
#endif |
|
if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) { |
|
feenableexcept(exceptions); |
|
} else { |
|
feclearexcept(exceptions); |
|
} |
|
_initialized = true; |
|
} |
|
|
|
void Scheduler::sitl_end_atomic() { |
|
if (_nested_atomic_ctr == 0) { |
|
hal.uartA->printf("NESTED ATOMIC ERROR\n"); |
|
} else { |
|
_nested_atomic_ctr--; |
|
} |
|
} |
|
|
|
void Scheduler::reboot(bool hold_in_bootloader) |
|
{ |
|
hal.uartA->printf("REBOOT NOT IMPLEMENTED\r\n\n"); |
|
} |
|
|
|
void Scheduler::_run_timer_procs(bool called_from_isr) |
|
{ |
|
if (_in_timer_proc) { |
|
// the timer calls took longer than the period of the |
|
// timer. This is bad, and may indicate a serious |
|
// driver failure. We can't just call the drivers |
|
// again, as we could run out of stack. So we only |
|
// call the _failsafe call. It's job is to detect if |
|
// the drivers or the main loop are indeed dead and to |
|
// activate whatever failsafe it thinks may help if |
|
// need be. We assume the failsafe code can't |
|
// block. If it does then we will recurse and die when |
|
// we run out of stack |
|
if (_failsafe != nullptr) { |
|
_failsafe(); |
|
} |
|
return; |
|
} |
|
_in_timer_proc = true; |
|
|
|
if (!_timer_suspended) { |
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i]) { |
|
_timer_proc[i](); |
|
} |
|
} |
|
} else if (called_from_isr) { |
|
_timer_event_missed = true; |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != nullptr) { |
|
_failsafe(); |
|
} |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
void Scheduler::_run_io_procs(bool called_from_isr) |
|
{ |
|
if (_in_io_proc) { |
|
return; |
|
} |
|
_in_io_proc = true; |
|
|
|
if (!_timer_suspended) { |
|
// now call the IO based drivers |
|
for (int i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i]) { |
|
_io_proc[i](); |
|
} |
|
} |
|
} else if (called_from_isr) { |
|
_timer_event_missed = true; |
|
} |
|
|
|
_in_io_proc = false; |
|
|
|
UARTDriver::from(hal.uartA)->_timer_tick(); |
|
UARTDriver::from(hal.uartB)->_timer_tick(); |
|
UARTDriver::from(hal.uartC)->_timer_tick(); |
|
UARTDriver::from(hal.uartD)->_timer_tick(); |
|
UARTDriver::from(hal.uartE)->_timer_tick(); |
|
UARTDriver::from(hal.uartF)->_timer_tick(); |
|
} |
|
|
|
/* |
|
set simulation timestamp |
|
*/ |
|
void Scheduler::stop_clock(uint64_t time_usec) |
|
{ |
|
_stopped_clock_usec = time_usec; |
|
_run_io_procs(false); |
|
} |
|
|
|
#endif
|
|
|