You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
3.2 KiB
95 lines
3.2 KiB
/* |
|
* polygon.cpp |
|
* Copyright (C) Andrew Tridgell 2011 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include "AP_Math.h" |
|
|
|
/* |
|
* The point in polygon algorithm is based on: |
|
* http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html |
|
*/ |
|
|
|
|
|
/* |
|
* Polygon_outside(): test for a point in a polygon |
|
* Input: P = a point, |
|
* V[] = vertex points of a polygon V[n+1] with V[n]=V[0] |
|
* Return: true if P is outside the polygon |
|
* |
|
* This does not take account of the curvature of the earth, but we |
|
* expect that to be very small over the distances involved in the |
|
* fence boundary |
|
*/ |
|
template <typename T> |
|
bool Polygon_outside(const Vector2<T> &P, const Vector2<T> *V, unsigned n) |
|
{ |
|
unsigned i, j; |
|
bool outside = true; |
|
for (i = 0, j = n-1; i < n; j = i++) { |
|
if ((V[i].y > P.y) == (V[j].y > P.y)) { |
|
continue; |
|
} |
|
const int32_t dx1 = P.x - V[i].x; |
|
const int32_t dx2 = V[j].x - V[i].x; |
|
const int32_t dy1 = P.y - V[i].y; |
|
const int32_t dy2 = V[j].y - V[i].y; |
|
const int8_t dx1s = (dx1 < 0) ? -1 : 1; |
|
const int8_t dx2s = (dx2 < 0) ? -1 : 1; |
|
const int8_t dy1s = (dy1 < 0) ? -1 : 1; |
|
const int8_t dy2s = (dy2 < 0) ? -1 : 1; |
|
const int8_t m1 = dx1s * dy2s; |
|
const int8_t m2 = dx2s * dy1s; |
|
// we avoid the 64 bit multiplies if we can based on sign checks. |
|
if (dy2 < 0) { |
|
if (m1 > m2) { |
|
outside = !outside; |
|
} else if (m1 < m2) { |
|
continue; |
|
} else if ( dx1 * (int64_t)dy2 > dx2 * (int64_t)dy1 ) { |
|
outside = !outside; |
|
} |
|
} else { |
|
if (m1 < m2) { |
|
outside = !outside; |
|
} else if (m1 > m2) { |
|
continue; |
|
} else if ( dx1 * (int64_t)dy2 < dx2 * (int64_t)dy1 ) { |
|
outside = !outside; |
|
} |
|
} |
|
} |
|
return outside; |
|
} |
|
|
|
/* |
|
* check if a polygon is complete. |
|
* |
|
* We consider a polygon to be complete if we have at least 4 points, |
|
* and the first point is the same as the last point. That is the |
|
* minimum requirement for the Polygon_outside function to work |
|
*/ |
|
template <typename T> |
|
bool Polygon_complete(const Vector2<T> *V, unsigned n) |
|
{ |
|
return (n >= 4 && V[n-1] == V[0]); |
|
} |
|
|
|
// Necessary to avoid linker errors |
|
template bool Polygon_outside<int32_t>(const Vector2l &P, const Vector2l *V, unsigned n); |
|
template bool Polygon_complete<int32_t>(const Vector2l *V, unsigned n); |
|
template bool Polygon_outside<float>(const Vector2f &P, const Vector2f *V, unsigned n); |
|
template bool Polygon_complete<float>(const Vector2f *V, unsigned n);
|
|
|