You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
332 lines
8.8 KiB
332 lines
8.8 KiB
/* |
|
AP_RC_Channel.cpp - Radio library for Arduino Legacy Hardware |
|
Code by Jason Short. DIYDrones.com |
|
Improvements to implement channel curves by Ron Curry, 2012 |
|
|
|
This library is free software; you can redistribute it and / or |
|
modify it under the terms of the GNU Lesser General Public |
|
License as published by the Free Software Foundation; either |
|
version 2.1 of the License, or (at your option) any later version. |
|
|
|
*/ |
|
|
|
#include <math.h> |
|
#include <avr/eeprom.h> |
|
#if defined(ARDUINO) && ARDUINO >= 100 |
|
#include "Arduino.h" |
|
#else |
|
#include "WProgram.h" |
|
#endif |
|
#include "AP_RC_Channel.h" |
|
|
|
#define ANGLE 0 |
|
#define RANGE 1 |
|
|
|
// setup the control preferences |
|
void |
|
AP_RC_Channel::set_range(int low, int high) |
|
{ |
|
_type = RANGE; |
|
_high = high; |
|
_low = low; |
|
} |
|
|
|
void |
|
AP_RC_Channel::set_angle(int angle) |
|
{ |
|
_type = ANGLE; |
|
_high = angle; |
|
} |
|
|
|
void |
|
AP_RC_Channel::set_reverse(bool reverse) |
|
{ |
|
if (reverse) _reverse = -1; |
|
else _reverse = 1; |
|
} |
|
|
|
bool |
|
AP_RC_Channel::get_reverse(void) |
|
{ |
|
if (_reverse==-1) return 1; |
|
else return 0; |
|
} |
|
|
|
void |
|
AP_RC_Channel::set_filter(bool filter) |
|
{ |
|
_filter = filter; |
|
} |
|
|
|
// call after first read |
|
void |
|
AP_RC_Channel::trim() |
|
{ |
|
radio_trim = radio_in; |
|
} |
|
|
|
//------------------------------------------------------------------------------- |
|
// Support for PWM translation (i.e. curves or "expo") |
|
// |
|
// Translation of the input PWM is done via a pointer "channel_curve" to an array that defines the PWM output value |
|
// for any given input value. The array is structured with element 0 equal to the number of elements |
|
// in the curve. If the length is zero then the array defines no curve. If the "channel_curve" pointer |
|
// is NULL that is interpretted as no curve defined and is the default state. |
|
// |
|
// Elements 1 to n of the array contain the values for the curve. These are defined in terms of the actual |
|
// PWM output pulsewidth desired for a given point on the curve with curve element 1 containing the value |
|
// for the lowest input value from the RC RX and element "n" containing the value for the highest input value |
|
// from the RX. |
|
// |
|
// Input PWM values are expected to be in the range of the radio calibration values "radio_min" to "radio_max". The |
|
// user must have already completed the radio calibration otherwise output will be inaccurage. Input PWM values |
|
// generate an index that falls between curve elements will cause the output to be interpolated in a linear fashion |
|
// between the curve elements. For example: A curve defined as element 0 = 2 (length), element 1 = 900, and |
|
// element 2 = 2100 would define a linear straight line output between 900 and 2100 for valid input values. |
|
// Additional elements could be inserted between element 1 and element 2 to define more complex |
|
// curves. - R. Curry 06-14-12 |
|
|
|
|
|
|
|
// Sets curve for channel output to user defined curve |
|
// Input: curve - A pointer to a user defined output curve for this channel |
|
void |
|
AP_RC_Channel::set_channel_curve(int *curve) |
|
{ |
|
_channel_curve = curve; // Channel_curve points to array containing curve info |
|
} |
|
|
|
// Unsets the curve for this channel - i.e. no curve translation |
|
void |
|
AP_RC_Channel::unset_channel_curve() |
|
{ |
|
_channel_curve = NULL; |
|
} |
|
|
|
|
|
// Apply the current curve to a PWM value |
|
// Input: PWM value in range of radio_min to radio_max |
|
// Output: Translated PWM value |
|
int |
|
AP_RC_Channel::apply_curve(int pwm) |
|
{ |
|
float scale; |
|
int index1, index2; |
|
|
|
if (_channel_curve != NULL) |
|
{ |
|
if (_channel_curve[0] > 0) // If the length of the curve isn't zero then use it |
|
{ |
|
// Calculate the index into the channel curve table |
|
scale = ((float)(pwm - radio_min) / |
|
(float)(radio_max - radio_min)) * |
|
((float)_channel_curve[0]-1); |
|
index1 = (int)scale; // get the index |
|
scale -= (float)index1; // scale now has the remainder for later |
|
|
|
if (index1 < 0) { // If the PWM value below our range then clamp to lowest table entry |
|
index1 = 0; |
|
scale = 0.0; |
|
} |
|
|
|
index2 = index1 + 1; // Point to the next entry beyond our current for interpolation |
|
if (index2 >= _channel_curve[0]) { // If we are beyond the end then clamp to highest entry |
|
index2 = _channel_curve[0] - 1; |
|
if (index1 >= _channel_curve[0]) { // Also check index 1 and clamp if necessary |
|
index1 = _channel_curve[0] -1; |
|
} |
|
} |
|
|
|
// Do the lookup and interpolation |
|
index1++; // curve values start at entry 1 |
|
index2++; |
|
pwm = ((_channel_curve[index1] * |
|
(1 - scale)) + (_channel_curve[index2] * |
|
scale)); // Get the pwm value from the curve and interpolate - done |
|
} |
|
} |
|
|
|
return pwm; // |
|
} |
|
|
|
|
|
//------------------------------------------------------------------------------- |
|
|
|
|
|
// read input from APM_RC - create a control_in value |
|
void |
|
AP_RC_Channel::set_pwm(int pwm) |
|
{ |
|
// Serial.print(pwm,DEC); |
|
|
|
// Apply the curve - if any |
|
pwm = apply_curve(pwm); |
|
|
|
if(_filter){ |
|
if(radio_in == 0) |
|
radio_in = pwm; |
|
else |
|
radio_in = ((pwm + radio_in) >> 1); // Small filtering |
|
}else{ |
|
radio_in = pwm; |
|
} |
|
|
|
if(_type == RANGE){ |
|
//Serial.print("range "); |
|
control_in = pwm_to_range(); |
|
control_in = (control_in < dead_zone) ? 0 : control_in; |
|
|
|
}else{ |
|
control_in = pwm_to_angle(); |
|
control_in = (abs(control_in) < dead_zone) ? 0 : control_in; |
|
|
|
} |
|
} |
|
|
|
|
|
int |
|
AP_RC_Channel::control_mix(float value) |
|
{ |
|
return (1 - abs(control_in / _high)) * value + control_in; |
|
} |
|
|
|
// are we below a threshold? |
|
bool |
|
AP_RC_Channel::get_failsafe(void) |
|
{ |
|
return (radio_in < (radio_min - 50)); |
|
} |
|
|
|
// returns just the PWM without the offset from radio_min |
|
void |
|
AP_RC_Channel::calc_pwm(void) |
|
{ |
|
|
|
if(_type == RANGE){ |
|
pwm_out = range_to_pwm(); |
|
radio_out = pwm_out + radio_min; |
|
}else{ |
|
pwm_out = angle_to_pwm(); |
|
radio_out = pwm_out + radio_trim; |
|
} |
|
// radio_out = constrain(radio_out, radio_min, radio_max); |
|
} |
|
|
|
// ------------------------------------------ |
|
|
|
void |
|
AP_RC_Channel::load_eeprom(void) |
|
{ |
|
radio_min = eeprom_read_word((uint16_t *) _address); |
|
radio_max = eeprom_read_word((uint16_t *) (_address + 2)); |
|
load_trim(); |
|
} |
|
|
|
void |
|
AP_RC_Channel::save_eeprom(void) |
|
{ |
|
eeprom_write_word((uint16_t *) _address, radio_min); |
|
eeprom_write_word((uint16_t *) (_address + 2), radio_max); |
|
save_trim(); |
|
} |
|
|
|
// ------------------------------------------ |
|
void |
|
AP_RC_Channel::save_trim(void) |
|
{ |
|
eeprom_write_word((uint16_t *) (_address + 4), radio_trim); |
|
//_ee.write_int((_address + 4), radio_trim); |
|
} |
|
|
|
void |
|
AP_RC_Channel::load_trim(void) |
|
{ |
|
radio_trim = eeprom_read_word((uint16_t *) (_address + 4)); |
|
//_ee.write_int((_address + 4), radio_trim); |
|
} |
|
|
|
// ------------------------------------------ |
|
|
|
void |
|
AP_RC_Channel::zero_min_max() |
|
{ |
|
radio_min = radio_max = radio_in; |
|
} |
|
|
|
void |
|
AP_RC_Channel::update_min_max() |
|
{ |
|
radio_min = min(radio_min, radio_in); |
|
radio_max = max(radio_max, radio_in); |
|
} |
|
|
|
// ------------------------------------------ |
|
|
|
int16_t |
|
AP_RC_Channel::pwm_to_angle() |
|
{ |
|
if(radio_in < radio_trim) |
|
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_trim - radio_min); |
|
else |
|
return _reverse * ((long)_high * (long)(radio_in - radio_trim)) / (long)(radio_max - radio_trim); |
|
|
|
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_max - radio_trim)); |
|
//return _reverse * _high * ((float)(radio_in - radio_trim) / (float)(radio_trim - radio_min)); |
|
} |
|
|
|
|
|
int16_t |
|
AP_RC_Channel::angle_to_pwm() |
|
{ |
|
if(_reverse == -1) |
|
{ |
|
if(servo_out < 0) |
|
return ( -1 * ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high); |
|
else |
|
return ( -1 * ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high); |
|
} else { |
|
if(servo_out > 0) |
|
return ((long)servo_out * (long)(radio_max - radio_trim)) / (long)_high; |
|
else |
|
return ((long)servo_out * (long)(radio_trim - radio_min)) / (long)_high; |
|
} |
|
|
|
//return (((float)servo_out / (float)_high) * (float)(radio_max - radio_trim)); |
|
//return (((float)servo_out / (float)_high) * (float)(radio_trim - radio_min)); |
|
} |
|
|
|
// ------------------------------------------ |
|
|
|
int16_t |
|
AP_RC_Channel::pwm_to_range() |
|
{ |
|
//return (_low + ((_high - _low) * ((float)(radio_in - radio_min) / (float)(radio_max - radio_min)))); |
|
return (_low + ((long)(_high - _low) * (long)(radio_in - radio_min)) / (long)(radio_max - radio_min)); |
|
} |
|
|
|
int16_t |
|
AP_RC_Channel::range_to_pwm() |
|
{ |
|
//return (((float)(servo_out - _low) / (float)(_high - _low)) * (float)(radio_max - radio_min)); |
|
return ((long)(servo_out - _low) * (long)(radio_max - radio_min)) / (long)(_high - _low); |
|
} |
|
|
|
// ------------------------------------------ |
|
|
|
float |
|
AP_RC_Channel::norm_input() |
|
{ |
|
if(radio_in < radio_trim) |
|
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min); |
|
else |
|
return _reverse * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim); |
|
} |
|
|
|
float |
|
AP_RC_Channel::norm_output() |
|
{ |
|
if(radio_out < radio_trim) |
|
return (float)(radio_out - radio_trim) / (float)(radio_trim - radio_min); |
|
else |
|
return (float)(radio_out - radio_trim) / (float)(radio_max - radio_trim); |
|
}
|
|
|