You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
824 lines
23 KiB
824 lines
23 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
// |
|
// This is free software; you can redistribute it and/or modify it under |
|
// the terms of the GNU Lesser General Public License as published by the |
|
// Free Software Foundation; either version 2.1 of the License, or (at |
|
// your option) any later version. |
|
// |
|
|
|
/// @file AP_Var.cpp |
|
/// @brief The AP variable store. |
|
|
|
#define USE_AP_VAR |
|
|
|
#include <AP_Common.h> |
|
#include <AP_Var.h> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
//#define ENABLE_FASTSERIAL_DEBUG |
|
|
|
#ifdef ENABLE_FASTSERIAL_DEBUG |
|
# include <FastSerial.h> |
|
# define serialDebug(fmt, args...) if (FastSerial::getInitialized(0)) do {Serial.printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__ , ##args); delay(0); } while(0) |
|
#else |
|
# define serialDebug(fmt, args...) |
|
#endif |
|
|
|
// Global constants exported for general use. |
|
// |
|
AP_Float AP_Float_unity ( 1.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted); |
|
AP_Float AP_Float_negative_unity(-1.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted); |
|
AP_Float AP_Float_zero ( 0.0, AP_Var::k_key_none, NULL, AP_Var::k_flag_unlisted); |
|
|
|
// Static member variables for AP_Var. |
|
// |
|
AP_Var *AP_Var::_variables; |
|
AP_Var *AP_Var::_grouped_variables; |
|
uint16_t AP_Var::_tail_sentinel; |
|
uint16_t AP_Var::_bytes_in_use; |
|
|
|
// Constructor for standalone variables |
|
// |
|
AP_Var::AP_Var(Key p_key, const prog_char_t *name, Flags flags) : |
|
_group(NULL), |
|
_key(p_key | k_key_not_located), |
|
_name(name), |
|
_flags(flags) |
|
{ |
|
// Insert the variable or group into the list of known variables, unless |
|
// it wants to be unlisted. |
|
// |
|
if (!has_flags(k_flag_unlisted)) { |
|
_link = _variables; |
|
_variables = this; |
|
} |
|
} |
|
|
|
// Constructor for variables in a group |
|
// |
|
AP_Var::AP_Var(AP_Var_group *pGroup, Key index, const prog_char_t *name, Flags flags) : |
|
_group(pGroup), |
|
_key(index), |
|
_name(name), |
|
_flags(flags) |
|
{ |
|
AP_Var **vp; |
|
|
|
// Sort the variable into the list of group-member variables. |
|
// |
|
// This list is kept sorted so that groups can traverse forwards along |
|
// it in order to enumerate their members in key order. |
|
// |
|
// We use a pointer-to-pointer insertion technique here; vp points |
|
// to the pointer to the node that we are considering inserting in front of. |
|
// |
|
vp = &_grouped_variables; |
|
size_t loopCount = 0; |
|
while (*vp != NULL) { |
|
|
|
if (loopCount++>k_num_max) return; |
|
|
|
if ((*vp)->_key >= _key) { |
|
break; |
|
} |
|
vp = &((*vp)->_link); |
|
} |
|
_link = *vp; |
|
*vp = this; |
|
} |
|
|
|
// Destructor |
|
// |
|
AP_Var::~AP_Var(void) |
|
{ |
|
AP_Var **vp; |
|
|
|
// Determine which list the variable may be in. |
|
// If the variable is a group member and the group has already |
|
// been destroyed, it may not be in any list. |
|
// |
|
if (_group) { |
|
vp = &_grouped_variables; |
|
} else { |
|
vp = &_variables; |
|
} |
|
|
|
// Scan the list and remove this if we find it |
|
|
|
{ |
|
size_t loopCount = 0; |
|
while (*vp) { |
|
|
|
if (loopCount++>k_num_max) return; |
|
|
|
if (*vp == this) { |
|
*vp = _link; |
|
break; |
|
} |
|
vp = &((*vp)->_link); |
|
} |
|
} |
|
|
|
// If we are destroying a group, remove all its variables from the list |
|
// |
|
if (has_flags(k_flag_is_group)) { |
|
|
|
// Scan the list and remove any variable that has this as its group |
|
vp = &_grouped_variables; |
|
size_t loopCount = 0; |
|
|
|
while (*vp) { |
|
|
|
if (loopCount++>k_num_max) return; |
|
|
|
// Does the variable claim us as its group? |
|
if ((*vp)->_group == this) { |
|
*vp = (*vp)->_link; |
|
continue; |
|
} |
|
vp = &((*vp)->_link); |
|
} |
|
} |
|
} |
|
|
|
// Copy the variable's whole name to the supplied buffer. |
|
// |
|
// If the variable is a group member, prepend the group name. |
|
// |
|
void AP_Var::copy_name(char *buffer, size_t buffer_size) const |
|
{ |
|
buffer[0] = '\0'; |
|
if (_name) { |
|
if (_group) |
|
_group->copy_name(buffer, buffer_size); |
|
strlcat_P(buffer, _name, buffer_size); |
|
} |
|
} |
|
|
|
// Find a variable by name. |
|
// |
|
AP_Var * |
|
AP_Var::find(const char *name) |
|
{ |
|
AP_Var *vp; |
|
|
|
size_t loopCount = 0; |
|
|
|
for (vp = first(); vp; vp = vp->next()) { |
|
|
|
if (loopCount++>k_num_max) return NULL; |
|
|
|
char name_buffer[32]; |
|
|
|
// copy the variable's name into our scratch buffer |
|
vp->copy_name(name_buffer, sizeof(name_buffer)); |
|
|
|
// compare with the user-supplied name |
|
if (!strcmp(name, name_buffer)) { |
|
return vp; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
// Find a variable by key. |
|
// |
|
AP_Var * |
|
AP_Var::find(Key key) |
|
{ |
|
AP_Var *vp; |
|
size_t loopCount = 0; |
|
for (vp = first(); vp; vp = vp->next()) { |
|
if (loopCount++>k_num_max) return NULL; |
|
if (key == vp->key()) { |
|
return vp; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
|
|
// Save the variable to EEPROM, if supported |
|
// |
|
bool AP_Var::save(void) |
|
{ |
|
uint8_t vbuf[k_size_max]; |
|
size_t size; |
|
|
|
// if the variable is a group member, save the group |
|
if (_group) { |
|
return _group->save(); |
|
} |
|
|
|
serialDebug("save: %S", _name ? _name : PSTR("??")); |
|
|
|
// locate the variable in EEPROM, allocating space as required |
|
if (!_EEPROM_locate(true)) { |
|
serialDebug("locate failed"); |
|
return false; |
|
} |
|
|
|
// serialize the variable into the buffer and work out how big it is |
|
size = serialize(vbuf, sizeof(vbuf)); |
|
if (0 == size) { |
|
// variable cannot be serialised into the buffer |
|
serialDebug("cannot save (too big or not supported)"); |
|
return false; |
|
} |
|
|
|
// if it fit in the buffer, save it to EEPROM |
|
if (size <= sizeof(vbuf)) { |
|
serialDebug("saving %u to %u", size, _key); |
|
// XXX this should use eeprom_update_block if/when Arduino moves to |
|
// avr-libc >= 1.7 |
|
uint8_t *ep = (uint8_t *)_key; |
|
for (size_t i = 0; i < size; i++, ep++) { |
|
uint8_t newv; |
|
// if value needs to change, change it |
|
if (eeprom_read_byte(ep) != vbuf[i]) |
|
eeprom_write_byte(ep, vbuf[i]); |
|
|
|
// now read it back |
|
newv = eeprom_read_byte(ep); |
|
if (newv != vbuf[i]) { |
|
serialDebug("readback failed at offset %p: got %u, expected %u", |
|
ep, newv, vbuf[i]); |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Load the variable from EEPROM, if supported |
|
// |
|
bool AP_Var::load(void) |
|
{ |
|
uint8_t vbuf[k_size_max]; |
|
size_t size; |
|
|
|
// if the variable is a group member, load the group |
|
if (_group) { |
|
return _group->load(); |
|
} |
|
|
|
serialDebug("load: %S", _name ? _name : PSTR("??")); |
|
|
|
// locate the variable in EEPROM, but do not allocate space |
|
if (!_EEPROM_locate(false)) { |
|
serialDebug("locate failed"); |
|
return false; |
|
} |
|
|
|
// ask the serializer how big the variable is |
|
// |
|
// XXX should check size in EEPROM var header too... |
|
// |
|
size = serialize(NULL, 0); |
|
if (0 == size) { |
|
serialDebug("cannot load (too big or not supported)"); |
|
return false; |
|
} |
|
|
|
// Read the buffer from EEPROM, now that _EEPROM_locate |
|
// has converted _key into an EEPROM address. |
|
// |
|
if (size <= sizeof(vbuf)) { |
|
serialDebug("loading %u from %u", size, _key); |
|
eeprom_read_block(vbuf, (void *)_key, size); |
|
return unserialize(vbuf, size); |
|
} |
|
return false; |
|
} |
|
|
|
// Save all variables that don't opt out. |
|
// |
|
// |
|
bool AP_Var::save_all(void) |
|
{ |
|
bool result = true; |
|
AP_Var *vp = _variables; |
|
|
|
size_t loopCount = 0; |
|
|
|
while (vp) { |
|
|
|
if (loopCount++>k_num_max) return false; |
|
|
|
if (!vp->has_flags(k_flag_no_auto_load) && // not opted out of autosave |
|
(vp->_key != k_key_none)) { // has a key |
|
|
|
if (!vp->save()) { |
|
result = false; |
|
} |
|
} |
|
vp = vp->_link; |
|
} |
|
return result; |
|
} |
|
|
|
// Load all variables that don't opt out. |
|
// |
|
bool AP_Var::load_all(void) |
|
{ |
|
bool result = true; |
|
AP_Var *vp = _variables; |
|
|
|
size_t loopCount = 0; |
|
|
|
while (vp) { |
|
|
|
if (loopCount++>k_num_max) return false; |
|
|
|
if (!vp->has_flags(k_flag_no_auto_load) && // not opted out of autoload |
|
(vp->_key != k_key_none)) { // has a key |
|
|
|
if (!vp->load()) { |
|
result = false; |
|
} |
|
} |
|
vp = vp->_link; |
|
} |
|
return result; |
|
} |
|
|
|
// Erase all variables in EEPROM. |
|
// |
|
// We first walk the variable set and recover their key values |
|
// from EEPROM, so that we have a chance of saving them later. |
|
// |
|
void |
|
AP_Var::erase_all() |
|
{ |
|
AP_Var *vp; |
|
uint16_t i; |
|
|
|
serialDebug("erase EEPROM"); |
|
|
|
// Scan the list of variables/groups, fetching their key values and |
|
// reverting them to their not-located state. |
|
// |
|
vp = _variables; |
|
|
|
size_t loopCount = 0; |
|
|
|
while (vp) { |
|
|
|
if (loopCount++>k_num_max) return; |
|
|
|
vp->_key = vp->key() | k_key_not_located; |
|
vp = vp->_link; |
|
} |
|
|
|
// wipe the whole EEPROM, including waypoints, as we call this |
|
// on firmware revison changes, which may include a change to the |
|
// waypoint format |
|
for (i = 0; i < k_EEPROM_size; i++) { |
|
eeprom_write_byte((uint8_t *)i, 0xff); |
|
} |
|
|
|
// revert to ignorance about the state of the EEPROM |
|
_tail_sentinel = 0; |
|
} |
|
|
|
// Return the key for a variable. |
|
// |
|
AP_Var::Key |
|
AP_Var::key(void) |
|
{ |
|
Var_header var_header; |
|
|
|
if (_group) { // group members don't have keys |
|
return k_key_none; |
|
} |
|
if (_key & k_key_not_located) { // if not located, key is in memory |
|
return _key & k_key_mask; |
|
} |
|
|
|
// Read key from EEPROM, note that _key points to the space |
|
// allocated for storage; the header is immediately before. |
|
// |
|
eeprom_read_block(&var_header, (void *)(_key - sizeof(var_header)), sizeof(var_header)); |
|
return var_header.key; |
|
} |
|
|
|
// Default implementation of cast_to_float, which always fails. |
|
// |
|
float |
|
AP_Var::cast_to_float(void) const |
|
{ |
|
return NAN; |
|
} |
|
|
|
// Return the next variable in the global list. |
|
// |
|
AP_Var * |
|
AP_Var::next(void) |
|
{ |
|
// If there is a variable after this one, return it. |
|
// |
|
if (_link) |
|
return _link; |
|
|
|
// If we are at the end of the _variables list, _group will be NULL; in that |
|
// case, move to the _grouped_variables list. |
|
// |
|
if (!_group) { |
|
return _grouped_variables; |
|
} |
|
|
|
// We must be at the end of the _grouped_variables list, nothing remains. |
|
// |
|
return NULL; |
|
} |
|
|
|
|
|
// Return the first variable that is a member of the group. |
|
// |
|
AP_Var * |
|
AP_Var::first_member(AP_Var_group *group) |
|
{ |
|
AP_Var **vp; |
|
|
|
vp = &_grouped_variables; |
|
|
|
serialDebug("seeking %p", group); |
|
|
|
size_t loopCount = 0; |
|
|
|
while (*vp) { |
|
|
|
if (loopCount++>k_num_max) return NULL; |
|
|
|
serialDebug("consider %p with %p", *vp, (*vp)->_group); |
|
if ((*vp)->_group == group) { |
|
return *vp; |
|
} |
|
vp = &((*vp)->_link); |
|
} |
|
return NULL; |
|
} |
|
|
|
// Return the next variable that is a member of the same group. |
|
AP_Var * |
|
AP_Var::next_member() |
|
{ |
|
AP_Var *vp; |
|
|
|
vp = _link; |
|
size_t loopCount = 0; |
|
|
|
while (vp) { |
|
|
|
if (loopCount++>k_num_max) return NULL; |
|
|
|
if (vp->_group == _group) { |
|
return vp; |
|
} |
|
vp = vp->_link; |
|
} |
|
return NULL; |
|
} |
|
|
|
// Scan the EEPROM and assign addresses to all the variables that |
|
// are known and found therein. |
|
// |
|
bool AP_Var::_EEPROM_scan(void) |
|
{ |
|
struct EEPROM_header ee_header; |
|
struct Var_header var_header; |
|
AP_Var *vp; |
|
uint16_t eeprom_address; |
|
|
|
// Assume that the EEPROM contents are invalid |
|
_tail_sentinel = 0; |
|
|
|
// read the header and validate |
|
eeprom_address = 0; |
|
eeprom_read_block(&ee_header, (void *)eeprom_address, sizeof(ee_header)); |
|
if ((ee_header.magic != k_EEPROM_magic) || |
|
(ee_header.revision != k_EEPROM_revision)) { |
|
|
|
serialDebug("no header, magic 0x%x revision %u", ee_header.magic, ee_header.revision); |
|
return false; |
|
} |
|
|
|
// scan the EEPROM |
|
// |
|
// Avoid trying to read a header when there isn't enough space left. |
|
// |
|
eeprom_address = sizeof(ee_header); |
|
|
|
size_t loopCount = 0; |
|
|
|
while (eeprom_address < (k_EEPROM_size - sizeof(var_header) - 1)) { |
|
|
|
if (loopCount++>k_num_max) return NULL; |
|
|
|
// Read a variable header |
|
// |
|
serialDebug("reading header from %u", eeprom_address); |
|
eeprom_read_block(&var_header, (void *)eeprom_address, sizeof(var_header)); |
|
|
|
// If the header is for the sentinel, scanning is complete |
|
// |
|
if (var_header.key == k_key_sentinel) { |
|
serialDebug("found tail sentinel"); |
|
break; |
|
} |
|
|
|
// Sanity-check the variable header and abort if it looks bad |
|
// |
|
if (k_EEPROM_size <= ( |
|
eeprom_address + // current position |
|
sizeof(var_header) + // header for this variable |
|
var_header.size + 1 + // data for this variable |
|
sizeof(var_header))) { // header for sentinel |
|
|
|
serialDebug("header overruns EEPROM"); |
|
return false; |
|
} |
|
|
|
// look for a variable with this key |
|
vp = _variables; |
|
size_t loopCount2 = 0; |
|
while(vp) { |
|
if (loopCount2++>k_num_max) return false; |
|
if (vp->key() == var_header.key) { |
|
// adjust the variable's key to point to this entry |
|
vp->_key = eeprom_address + sizeof(var_header); |
|
serialDebug("update %p with key %u -> %u", vp, var_header.key, vp->_key); |
|
break; |
|
} |
|
vp = vp->_link; |
|
} |
|
if (!vp) { |
|
serialDebug("key %u not claimed (already scanned or unknown)", var_header.key); |
|
} |
|
|
|
// move to the next variable header |
|
eeprom_address += sizeof(var_header) + var_header.size + 1; |
|
} |
|
|
|
// Mark any variables that weren't assigned addresses as not-allocated, |
|
// so that we don't waste time looking for them again later. |
|
// |
|
// Note that this isn't done when the header is not found on an empty EEPROM. |
|
// The first variable written on an empty EEPROM falls out as soon as the |
|
// header is not found. The second will scan and find one variable, then |
|
// mark all the rest as not allocated. |
|
// |
|
vp = _variables; |
|
size_t loopCount3 = 0; |
|
while(vp) { |
|
if (loopCount3++>k_num_max) return false; |
|
if (vp->_key & k_key_not_located) { |
|
vp->_key |= k_key_not_allocated; |
|
serialDebug("key %u not allocated", vp->key()); |
|
} |
|
vp = vp->_link; |
|
} |
|
|
|
// Scanning is complete |
|
serialDebug("scan done"); |
|
_tail_sentinel = eeprom_address; |
|
return true; |
|
} |
|
|
|
// Locate a variable in EEPROM, allocating space if required. |
|
// |
|
bool AP_Var::_EEPROM_locate(bool allocate) |
|
{ |
|
Var_header var_header; |
|
Key new_location; |
|
size_t size; |
|
|
|
// Is it a group member, or does it have a no-location key? |
|
// |
|
if (_group || (_key == k_key_none)) { |
|
serialDebug("not addressable"); |
|
return false; // it is/does, and thus it has no location |
|
} |
|
|
|
// Has the variable already been located? |
|
// |
|
if (!(_key & k_key_not_located)) { |
|
return true; // it has |
|
} |
|
|
|
// We don't know where this variable belongs. If the variable isn't |
|
// marked as already having been looked for and not found in EEPROM, |
|
// try scanning to see if we can locate it. |
|
// |
|
if (!(_key & k_key_not_allocated)) { |
|
serialDebug("need scan"); |
|
_EEPROM_scan(); |
|
|
|
// Has the variable now been located? |
|
// |
|
if (!(_key & k_key_not_located)) { |
|
return true; // it has |
|
} |
|
} |
|
|
|
// If not located and not permitted to allocate, we have failed. |
|
// |
|
if (!allocate) { |
|
return false; |
|
} |
|
serialDebug("needs allocation"); |
|
|
|
// Ask the serializer for the size of the thing we are allocating, and fail |
|
// if it is too large or if it has no size, as we will not be able to allocate |
|
// space for it. |
|
// |
|
size = serialize(NULL, 0); |
|
if ((size == 0) || (size > k_size_max)) { |
|
serialDebug("size %u out of bounds", size); |
|
return false; |
|
} |
|
|
|
// Make sure there will be space in the EEPROM for the variable, its |
|
// header and the new tail sentinel. |
|
// |
|
if ((_tail_sentinel + size + sizeof(Var_header) * 2) > k_EEPROM_size) { |
|
serialDebug("no space in EEPROM"); |
|
return false; |
|
} |
|
|
|
// If there is no data in the EEPROM, write the header and move the |
|
// sentinel. |
|
// |
|
if (0 == _tail_sentinel) { |
|
uint8_t pad_size; |
|
|
|
serialDebug("writing header"); |
|
EEPROM_header ee_header; |
|
|
|
ee_header.magic = k_EEPROM_magic; |
|
ee_header.revision = k_EEPROM_revision; |
|
ee_header.spare = 0; |
|
|
|
eeprom_write_block(&ee_header, (void *)0, sizeof(ee_header)); |
|
|
|
_tail_sentinel = sizeof(ee_header); |
|
|
|
// Write a variable-sized pad header with a reserved key value |
|
// to help wear-level the EEPROM a bit. |
|
pad_size = (((uint8_t)micros()) % k_size_max) + 1; // should be fairly random |
|
var_header.key = k_key_pad; |
|
var_header.size = pad_size - 1; |
|
var_header.spare = 0; |
|
|
|
eeprom_write_block(&var_header, (void *)_tail_sentinel, sizeof(var_header)); |
|
_tail_sentinel += sizeof(var_header) + pad_size; |
|
} |
|
|
|
// Save the location we are going to insert at, and compute the new |
|
// tail sentinel location. |
|
// |
|
new_location = _tail_sentinel; |
|
_tail_sentinel += sizeof(var_header) + size; |
|
serialDebug("allocated %u/%u for key %u new sentinel %u", new_location, size, key(), _tail_sentinel); |
|
|
|
// Write the new sentinel first. If we are interrupted during this operation |
|
// the old sentinel will still correctly terminate the EEPROM image. |
|
// |
|
var_header.key = k_key_sentinel; |
|
var_header.size = 0; |
|
var_header.spare = 0; |
|
eeprom_write_block(&var_header, (void *)_tail_sentinel, sizeof(var_header)); |
|
|
|
// Write the header for the block we have just located, claiming the EEPROM space. |
|
// |
|
var_header.key = key(); |
|
var_header.size = size - 1; |
|
eeprom_write_block(&var_header, (void *)new_location, sizeof(var_header)); |
|
|
|
// We have successfully allocated space and thus located the variable. |
|
// Update _key to point to the space allocated for it. |
|
// |
|
_key = new_location + sizeof(var_header); |
|
return true; |
|
} |
|
|
|
size_t |
|
AP_Var_group::serialize(void *buf, size_t buf_size) const |
|
{ |
|
// We have to cast away the const in order to call _serialize_unserialize, |
|
// as it cannot be const due to changing this when called to unserialize. |
|
// |
|
// XXX it's questionable how much advantage we get from having ::serialize |
|
// const in the first place... |
|
// |
|
return const_cast<AP_Var_group *>(this)->_serialize_unserialize(buf, buf_size, true); |
|
} |
|
|
|
size_t |
|
AP_Var_group::unserialize(void *buf, size_t buf_size) |
|
{ |
|
return _serialize_unserialize(buf, buf_size, false); |
|
} |
|
|
|
size_t |
|
AP_Var_group::_serialize_unserialize(void *buf, size_t buf_size, bool do_serialize) |
|
{ |
|
AP_Var *vp; |
|
size_t size, total_size; |
|
|
|
// Traverse the list of group members, serializing each in order |
|
// |
|
vp = first_member(this); |
|
serialDebug("starting with %p", vp); |
|
total_size = 0; |
|
|
|
size_t loopCount = 0; |
|
|
|
while (vp) { |
|
|
|
if (loopCount++>k_num_max) return false; |
|
|
|
// (un)serialise the group member |
|
if (do_serialize) { |
|
size = vp->serialize(buf, buf_size); |
|
serialDebug("serialize %p -> %u", vp, size); |
|
} else { |
|
size = vp->unserialize(buf, buf_size); |
|
serialDebug("unserialize %p -> %u", vp, size); |
|
} |
|
|
|
// Unserialize will return zero if the buffer is too small |
|
// Serialize will only return zero if the variable cannot be serialised |
|
// Either case is fatal for any operation we might be trying. |
|
// |
|
if (0 == size) { |
|
serialDebug("group (un)serialize failed, buffer too small or not supported"); |
|
return 0; |
|
} |
|
|
|
|
|
// Account for the space that this variable consumes in the buffer |
|
// |
|
// We always count the total size, and we always advance the buffer pointer |
|
// if there was room for the variable. This does mean that in the case where |
|
// the buffer was too small for a variable in the middle of the group, that |
|
// a smaller variable after it in the group may still be serialised into |
|
// the buffer. Since that's a rare case it's not worth optimising for - in |
|
// either case this function will return a size greater than the buffer size |
|
// and the calling function will have to treat it as an error. |
|
// |
|
total_size += size; |
|
serialDebug("used %u", total_size); |
|
if (size <= buf_size) { |
|
// there was space for this one, account for it |
|
buf_size -= size; |
|
buf = (void *)((uint8_t *)buf + size); |
|
} |
|
|
|
vp = vp->next_member(); |
|
} |
|
return total_size; |
|
} |
|
|
|
// Static pseudo-constant type IDs for known AP_VarT subclasses. |
|
// |
|
AP_Meta_class::Type_id AP_Var::k_typeid_float; ///< meta_type_id() value for AP_Float |
|
AP_Meta_class::Type_id AP_Var::k_typeid_float16; ///< meta_type_id() value for AP_Float16 |
|
AP_Meta_class::Type_id AP_Var::k_typeid_int32; ///< meta_type_id() value for AP_Int32 |
|
AP_Meta_class::Type_id AP_Var::k_typeid_int16; ///< meta_type_id() value for AP_Int16 |
|
AP_Meta_class::Type_id AP_Var::k_typeid_int8; ///< meta_type_id() value for AP_Int8 |
|
AP_Meta_class::Type_id AP_Var::k_typeid_group; ///< meta_type_id() value for AP_Var_group |
|
|
|
/// A special class used to initialise the k_typeid_* values that AP_Var exports. |
|
/// |
|
class AP_Var_typesetup |
|
{ |
|
public: |
|
/// Constructor |
|
/// |
|
/// This constructor should be run just once by creating a static instance |
|
/// of the class. It will initialise the k_typeid_* values for the well-known |
|
/// AP_VarT subclasses. |
|
/// |
|
/// When a new subclass is created, a new k_typeid_* constant should also be |
|
/// created and the list below should likewise be expanded. |
|
/// |
|
AP_Var_typesetup(void); |
|
}; |
|
|
|
/// Initialise AP_Var's k_typeid_* values |
|
AP_Var_typesetup::AP_Var_typesetup(void) |
|
{ |
|
AP_Var::k_typeid_float = AP_Meta_class::meta_type_id<AP_Float>(); |
|
AP_Var::k_typeid_float16 = AP_Meta_class::meta_type_id<AP_Float16>(); |
|
AP_Var::k_typeid_int32 = AP_Meta_class::meta_type_id<AP_Int32>(); |
|
AP_Var::k_typeid_int16 = AP_Meta_class::meta_type_id<AP_Int16>(); |
|
AP_Var::k_typeid_int8 = AP_Meta_class::meta_type_id<AP_Int8>(); |
|
AP_Var::k_typeid_group = AP_Meta_class::meta_type_id<AP_Var_group>(); |
|
} |
|
|
|
/// Cause the AP_Var_typesetup constructor to be run. |
|
/// |
|
static AP_Var_typesetup _typesetup __attribute__((used));
|
|
|