You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1165 lines
31 KiB
1165 lines
31 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
/* |
|
ArduCopterMega Version 0.1.3 Experimental |
|
Authors: Jason Short |
|
Based on code and ideas from the Arducopter team: Jose Julio, Randy Mackay, Jani Hirvinen |
|
Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier |
|
|
|
|
|
This firmware is free software; you can redistribute it and/or |
|
modify it under the terms of the GNU Lesser General Public |
|
License as published by the Free Software Foundation; either |
|
version 2.1 of the License, or (at your option) any later version. |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// AVR runtime |
|
#include <avr/io.h> |
|
#include <avr/eeprom.h> |
|
#include <avr/pgmspace.h> |
|
#include <math.h> |
|
|
|
// Libraries |
|
#include <FastSerial.h> |
|
#include <AP_Common.h> |
|
#include <APM_RC.h> // ArduPilot Mega RC Library |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <Wire.h> // Arduino I2C lib |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <APM_BMP085.h> // ArduPilot Mega BMP085 Library |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library |
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library |
|
#include <PID.h> // PID library |
|
#include <RC_Channel.h> // RC Channel Library |
|
#include <AP_RangeFinder.h> // Range finder library |
|
|
|
#define MAVLINK_COMM_NUM_BUFFERS 2 |
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
|
|
// Configuration |
|
#include "config.h" |
|
|
|
// Local modules |
|
#include "defines.h" |
|
#include "Parameters.h" |
|
#include "global_data.h" |
|
#include "GCS.h" |
|
#include "HIL.h" |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Serial ports |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Note that FastSerial port buffers are allocated at ::begin time, |
|
// so there is not much of a penalty to defining ports that we don't |
|
// use. |
|
// |
|
FastSerialPort0(Serial); // FTDI/console |
|
FastSerialPort1(Serial1); // GPS port |
|
FastSerialPort3(Serial3); // Telemetry port |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Global parameters are all contained within the 'g' class. |
|
// |
|
Parameters g; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// prototypes |
|
void update_events(void); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
// All GPS access should be through this pointer. |
|
GPS *g_gps; |
|
|
|
#if HIL_MODE == HIL_MODE_NONE |
|
|
|
// real sensors |
|
AP_ADC_ADS7844 adc; |
|
APM_BMP085_Class barometer; |
|
AP_Compass_HMC5843 compass(Parameters::k_param_compass); |
|
|
|
// real GPS selection |
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO |
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA |
|
AP_GPS_NMEA g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF |
|
AP_GPS_SIRF g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX |
|
AP_GPS_UBLOX g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK |
|
AP_GPS_MTK g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 |
|
AP_GPS_MTK16 g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE |
|
AP_GPS_None g_gps_driver(NULL); |
|
|
|
#else |
|
#error Unrecognised GPS_PROTOCOL setting. |
|
#endif // GPS PROTOCOL |
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS |
|
// sensor emulators |
|
AP_ADC_HIL adc; |
|
APM_BMP085_HIL_Class barometer; |
|
AP_Compass_HIL compass; |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE |
|
AP_DCM_HIL dcm; |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
AP_Compass_HIL compass; // never used |
|
AP_IMU_Shim imu; // never used |
|
|
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
// HIL |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK |
|
GCS_MAVLINK hil; |
|
#elif HIL_PROTOCOL == HIL_PROTOCOL_XPLANE |
|
HIL_XPLANE hil; |
|
#endif // HIL PROTOCOL |
|
#endif // HIL_MODE |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
#if HIL_MODE != HIL_MODE_SENSORS |
|
// Normal |
|
AP_IMU_Oilpan imu(&adc, Parameters::k_param_IMU_calibration); |
|
#else |
|
// hil imu |
|
AP_IMU_Shim imu; |
|
#endif |
|
// normal dcm |
|
AP_DCM dcm(&imu, g_gps); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
GCS_MAVLINK gcs; |
|
#else |
|
// If we are not using a GCS, we need a stub that does nothing. |
|
GCS_Class gcs; |
|
#endif |
|
|
|
AP_RangeFinder_MaxsonarXL sonar; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
byte control_mode = STABILIZE; |
|
byte oldSwitchPosition; // for remembering the control mode switch |
|
|
|
const char *comma = ","; |
|
|
|
const char* flight_mode_strings[] = { |
|
"STABILIZE", |
|
"ACRO", |
|
"ALT_HOLD", |
|
"SIMPLE", |
|
"FBW", |
|
"AUTO", |
|
"GCS_AUTO", |
|
"LOITER", |
|
"RTL"}; |
|
|
|
/* Radio values |
|
Channel assignments |
|
1 Ailerons (rudder if no ailerons) |
|
2 Elevator |
|
3 Throttle |
|
4 Rudder (if we have ailerons) |
|
5 Mode - 3 position switch |
|
6 User assignable |
|
7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) |
|
8 TBD |
|
*/ |
|
|
|
// Radio |
|
// ----- |
|
int motor_out[8]; |
|
Vector3f omega; |
|
|
|
// Failsafe |
|
// -------- |
|
boolean failsafe; // did our throttle dip below the failsafe value? |
|
boolean ch3_failsafe; |
|
boolean motor_armed; |
|
boolean motor_auto_safe; |
|
|
|
// PIDs |
|
// ---- |
|
int max_stabilize_dampener; // |
|
int max_yaw_dampener; // |
|
boolean rate_yaw_flag; // used to transition yaw control from Rate control to Yaw hold |
|
|
|
// LED output |
|
// ---------- |
|
boolean motor_light; // status of the Motor safety |
|
boolean GPS_light; // status of the GPS light |
|
|
|
// GPS variables |
|
// ------------- |
|
const float t7 = 10000000.0; // used to scale GPS values for EEPROM storage |
|
float scaleLongUp = 1; // used to reverse longtitude scaling |
|
float scaleLongDown = 1; // used to reverse longtitude scaling |
|
byte ground_start_count = 5; // have we achieved first lock and set Home? |
|
|
|
// Location & Navigation |
|
// --------------------- |
|
const float radius_of_earth = 6378100; // meters |
|
const float gravity = 9.81; // meters/ sec^2 |
|
long nav_bearing; // deg * 100 : 0 to 360 current desired bearing to navigate |
|
long target_bearing; // deg * 100 : 0 to 360 location of the plane to the target |
|
long crosstrack_bearing; // deg * 100 : 0 to 360 desired angle of plane to target |
|
int climb_rate; // m/s * 100 - For future implementation of controlled ascent/descent by rate |
|
float nav_gain_scaler = 1; // Gain scaling for headwind/tailwind TODO: why does this variable need to be initialized to 1? |
|
|
|
byte command_must_index; // current command memory location |
|
byte command_may_index; // current command memory location |
|
byte command_must_ID; // current command ID |
|
byte command_may_ID; // current command ID |
|
|
|
float cos_roll_x = 1; |
|
float cos_pitch_x = 1; |
|
float cos_yaw_x = 1; |
|
float sin_pitch_y, sin_yaw_y, sin_roll_y; |
|
float sin_nav_y, cos_nav_x; // used in calc_waypoint_nav |
|
long initial_simple_bearing; // used for Simple mode |
|
|
|
// Airspeed |
|
// -------- |
|
int airspeed; // m/s * 100 |
|
|
|
// Location Errors |
|
// --------------- |
|
long bearing_error; // deg * 100 : 0 to 36000 |
|
long altitude_error; // meters * 100 we are off in altitude |
|
float crosstrack_error; // meters we are off trackline |
|
long distance_error; // distance to the WP |
|
long yaw_error; // how off are we pointed |
|
long long_error, lat_error; // temp for debugging |
|
|
|
// Battery Sensors |
|
// --------------- |
|
float battery_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of total battery, initialized above threshold for filter |
|
float battery_voltage1 = LOW_VOLTAGE * 1.05; // Battery Voltage of cell 1, initialized above threshold for filter |
|
float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2, initialized above threshold for filter |
|
float battery_voltage3 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3, initialized above threshold for filter |
|
float battery_voltage4 = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter |
|
|
|
float current_voltage = LOW_VOLTAGE * 1.05; // Battery Voltage of cells 1 + 2+3 + 4, initialized above threshold for filter |
|
float current_amps; |
|
float current_total; |
|
|
|
// Airspeed Sensors |
|
// ---------------- |
|
|
|
// Barometer Sensor variables |
|
// -------------------------- |
|
unsigned long abs_pressure; |
|
unsigned long ground_pressure; |
|
int ground_temperature; |
|
|
|
// Altitude Sensor variables |
|
// ---------------------- |
|
long sonar_alt; |
|
long baro_alt; |
|
byte altitude_sensor = BARO; // used to know which sensor is active, BARO or SONAR |
|
|
|
// flight mode specific |
|
// -------------------- |
|
boolean takeoff_complete; // Flag for using take-off controls |
|
boolean land_complete; |
|
//int takeoff_altitude; |
|
int landing_distance; // meters; |
|
long old_alt; // used for managing altitude rates |
|
int velocity_land; |
|
bool nav_yaw_towards_wp; // point at the next WP |
|
|
|
// Loiter management |
|
// ----------------- |
|
long old_target_bearing; // deg * 100 |
|
int loiter_total; // deg : how many times to loiter * 360 |
|
int loiter_delta; // deg : how far we just turned |
|
int loiter_sum; // deg : how far we have turned around a waypoint |
|
long loiter_time; // millis : when we started LOITER mode |
|
int loiter_time_max; // millis : how long to stay in LOITER mode |
|
|
|
// these are the values for navigation control functions |
|
// ---------------------------------------------------- |
|
long nav_roll; // deg * 100 : target roll angle |
|
long nav_pitch; // deg * 100 : target pitch angle |
|
long nav_yaw; // deg * 100 : target yaw angle |
|
long nav_lat; // for error calcs |
|
long nav_lon; // for error calcs |
|
int nav_throttle; // 0-1000 for throttle control |
|
int nav_throttle_old; // for filtering |
|
|
|
long command_yaw_start; // what angle were we to begin with |
|
long command_yaw_start_time; // when did we start turning |
|
int command_yaw_time; // how long we are turning |
|
long command_yaw_end; // what angle are we trying to be |
|
long command_yaw_delta; // how many degrees will we turn |
|
int command_yaw_speed; // how fast to turn |
|
byte command_yaw_dir; |
|
|
|
// Waypoints |
|
// --------- |
|
long wp_distance; // meters - distance between plane and next waypoint |
|
long wp_totalDistance; // meters - distance between old and next waypoint |
|
byte next_wp_index; // Current active command index |
|
|
|
// repeating event control |
|
// ----------------------- |
|
byte event_id; // what to do - see defines |
|
long event_timer; // when the event was asked for in ms |
|
int event_delay; // how long to delay the next firing of event in millis |
|
int event_repeat; // how many times to fire : 0 = forever, 1 = do once, 2 = do twice |
|
int event_value; // per command value, such as PWM for servos |
|
int event_undo_value; // the value used to undo commands |
|
byte repeat_forever; |
|
byte undo_event; // counter for timing the undo |
|
|
|
// delay command |
|
// -------------- |
|
long condition_value; // used in condition commands (eg delay, change alt, etc.) |
|
long condition_start; |
|
int condition_rate; |
|
|
|
// 3D Location vectors |
|
// ------------------- |
|
struct Location home; // home location |
|
struct Location prev_WP; // last waypoint |
|
struct Location current_loc; // current location |
|
struct Location next_WP; // next waypoint |
|
struct Location tell_command; // command for telemetry |
|
struct Location next_command; // command preloaded |
|
long target_altitude; // used for |
|
//long offset_altitude; // used for |
|
boolean home_is_set; // Flag for if we have g_gps lock and have set the home location |
|
|
|
|
|
// IMU variables |
|
// ------------- |
|
float G_Dt = 0.02; // Integration time for the gyros (DCM algorithm) |
|
|
|
|
|
// Performance monitoring |
|
// ---------------------- |
|
long perf_mon_timer; |
|
float imu_health; // Metric based on accel gain deweighting |
|
int G_Dt_max; // Max main loop cycle time in milliseconds |
|
byte gyro_sat_count; |
|
byte adc_constraints; |
|
byte renorm_sqrt_count; |
|
byte renorm_blowup_count; |
|
int gps_fix_count; |
|
byte gcs_messages_sent; |
|
|
|
|
|
// GCS |
|
// --- |
|
char GCS_buffer[53]; |
|
char display_PID = -1; // Flag used by DebugTerminal to indicate that the next PID calculation with this index should be displayed |
|
|
|
// System Timers |
|
// -------------- |
|
unsigned long fast_loopTimer; // Time in miliseconds of main control loop |
|
unsigned long fast_loopTimeStamp; // Time Stamp when fast loop was complete |
|
uint8_t delta_ms_fast_loop; // Delta Time in miliseconds |
|
int mainLoop_count; |
|
|
|
unsigned long medium_loopTimer; // Time in miliseconds of navigation control loop |
|
byte medium_loopCounter; // Counters for branching from main control loop to slower loops |
|
uint8_t delta_ms_medium_loop; |
|
|
|
byte slow_loopCounter; |
|
int superslow_loopCounter; |
|
byte fbw_timer; // for limiting the execution of FBW input |
|
|
|
//unsigned long nav_loopTimer; // used to track the elapsed ime for GPS nav |
|
unsigned long nav2_loopTimer; // used to track the elapsed ime for GPS nav |
|
|
|
//unsigned long dTnav; // Delta Time in milliseconds for navigation computations |
|
unsigned long dTnav2; // Delta Time in milliseconds for navigation computations |
|
unsigned long elapsedTime; // for doing custom events |
|
float load; // % MCU cycles used |
|
|
|
byte counter_one_herz; |
|
|
|
byte GPS_failure_counter = 3; |
|
bool GPS_disabled = false; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
void setup() { |
|
init_ardupilot(); |
|
} |
|
|
|
void loop() |
|
{ |
|
// We want this to execute at 100Hz |
|
// -------------------------------- |
|
if (millis() - fast_loopTimer > 9) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
fast_loopTimer = millis(); |
|
load = float(fast_loopTimeStamp - fast_loopTimer) / delta_ms_fast_loop; |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator |
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
fast_loopTimeStamp = millis(); |
|
} |
|
|
|
if (millis() - medium_loopTimer > 19) { |
|
delta_ms_medium_loop = millis() - medium_loopTimer; |
|
medium_loopTimer = millis(); |
|
|
|
medium_loop(); |
|
|
|
counter_one_herz++; |
|
if(counter_one_herz == 50){ |
|
super_slow_loop(); |
|
counter_one_herz = 0; |
|
} |
|
|
|
if (millis() - perf_mon_timer > 20000) { |
|
if (mainLoop_count != 0) { |
|
gcs.send_message(MSG_PERF_REPORT); |
|
if (g.log_bitmask & MASK_LOG_PM) |
|
Log_Write_Performance(); |
|
|
|
resetPerfData(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Main loop 50-100Hz |
|
void fast_loop() |
|
{ |
|
// IMU DCM Algorithm |
|
read_AHRS(); |
|
|
|
// This is the fast loop - we want it to execute at >= 100Hz |
|
// --------------------------------------------------------- |
|
if (delta_ms_fast_loop > G_Dt_max) |
|
G_Dt_max = delta_ms_fast_loop; |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_current_flight_mode(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLINK |
|
// HIL for a copter needs very fast update of the servo values |
|
gcs.send_message(MSG_RADIO_OUT); |
|
#endif |
|
} |
|
|
|
void medium_loop() |
|
{ |
|
// Read radio |
|
// ---------- |
|
read_radio(); // read the radio first |
|
|
|
// reads all of the necessary trig functions for cameras, throttle, etc. |
|
update_trig(); |
|
|
|
// This is the start of the medium (10 Hz) loop pieces |
|
// ----------------------------------------- |
|
switch(medium_loopCounter) { |
|
|
|
// This case deals with the GPS and Compass |
|
//----------------------------------------- |
|
case 0: |
|
medium_loopCounter++; |
|
|
|
if(GPS_failure_counter > 0){ |
|
update_GPS(); |
|
|
|
}else if(GPS_failure_counter == 0){ |
|
GPS_disabled = true; |
|
} |
|
//readCommands(); |
|
|
|
if(g.compass_enabled){ |
|
compass.read(); // Read magnetometer |
|
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading |
|
compass.null_offsets(dcm.get_dcm_matrix()); |
|
} |
|
|
|
break; |
|
|
|
// This case performs some navigation computations |
|
//------------------------------------------------ |
|
case 1: |
|
medium_loopCounter++; |
|
|
|
// calc pitch and roll to target |
|
// ----------------------------- |
|
dTnav2 = millis() - nav2_loopTimer; |
|
nav2_loopTimer = millis(); |
|
|
|
// hack to stop navigation in Simple mode |
|
if (control_mode == SIMPLE) |
|
break; |
|
|
|
if (control_mode == FBW) |
|
break; |
|
|
|
// Auto control modes: |
|
if(g_gps->new_data){ |
|
g_gps->new_data = false; |
|
|
|
// we are not tracking I term on navigation, so this isn't needed |
|
//dTnav = millis() - nav_loopTimer; |
|
//nav_loopTimer = millis(); |
|
|
|
// calculate the copter's desired bearing and WP distance |
|
// ------------------------------------------------------ |
|
navigate(); |
|
} |
|
|
|
// we call these regardless of GPS because of the rapid nature of the yaw sensor |
|
// ----------------------------------------------------------------------------- |
|
if(wp_distance < 800){ // 8 meters |
|
calc_loiter_nav(); |
|
}else{ |
|
calc_waypoint_nav(); |
|
} |
|
|
|
break; |
|
|
|
// command processing |
|
//------------------- |
|
case 2: |
|
medium_loopCounter++; |
|
|
|
// Read altitude from sensors |
|
// -------------------------- |
|
update_alt(); |
|
|
|
// perform next command |
|
// -------------------- |
|
if(control_mode == AUTO || control_mode == GCS_AUTO){ |
|
update_commands(); |
|
} |
|
break; |
|
|
|
// This case deals with sending high rate telemetry |
|
//------------------------------------------------- |
|
case 3: |
|
medium_loopCounter++; |
|
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED && (g.log_bitmask & MASK_LOG_ATTITUDE_FAST == 0)) |
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if (g.log_bitmask & MASK_LOG_CTUN) |
|
Log_Write_Control_Tuning(); |
|
#endif |
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN) |
|
Log_Write_Nav_Tuning(); |
|
|
|
if (g.log_bitmask & MASK_LOG_GPS){ |
|
if(home_is_set){ |
|
Log_Write_GPS(g_gps->time, |
|
current_loc.lat, |
|
current_loc.lng, |
|
g_gps->altitude, |
|
current_loc.alt, |
|
(long)g_gps->ground_speed, |
|
g_gps->ground_course, |
|
g_gps->fix, |
|
g_gps->num_sats); |
|
} |
|
} |
|
|
|
// XXX this should be a "GCS medium loop" interface |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(5,45); |
|
// send all requested output streams with rates requested |
|
// between 5 and 45 Hz |
|
#else |
|
gcs.send_message(MSG_ATTITUDE); // Sends attitude data |
|
#endif |
|
break; |
|
|
|
// This case controls the slow loop |
|
//--------------------------------- |
|
case 4: |
|
medium_loopCounter = 0; |
|
|
|
if (g.current_enabled){ |
|
read_current(); |
|
} |
|
|
|
// Accel trims = hold > 2 seconds |
|
// Throttle cruise = switch less than 1 second |
|
// -------------------------------------------- |
|
read_trim_switch(); |
|
|
|
// Check for engine arming |
|
// ----------------------- |
|
arm_motors(); |
|
|
|
slow_loop(); |
|
break; |
|
|
|
default: |
|
// this is just a catch all |
|
// ------------------------ |
|
medium_loopCounter = 0; |
|
break; |
|
} |
|
|
|
// stuff that happens at 50 hz |
|
// --------------------------- |
|
|
|
// use Yaw to find our bearing error |
|
calc_bearing_error(); |
|
|
|
// guess how close we are - fixed observer calc |
|
//calc_distance_error(); |
|
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) |
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (int)dcm.yaw_sensor); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if (g.log_bitmask & MASK_LOG_RAW) |
|
Log_Write_Raw(); |
|
#endif |
|
|
|
#if GCS_PROTOCOL == 6 // This is here for Benjamin Pelletier. Please do not remove without checking with me. Doug W |
|
readgcsinput(); |
|
#endif |
|
|
|
#if ENABLE_CAM |
|
camera_stabilization(); |
|
#endif |
|
|
|
// kick the GCS to process uplink data |
|
gcs.update(); |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(45,1000); |
|
#endif |
|
} |
|
|
|
void slow_loop() |
|
{ |
|
// This is the slow (3 1/3 Hz) loop pieces |
|
//---------------------------------------- |
|
switch (slow_loopCounter){ |
|
case 0: |
|
slow_loopCounter++; |
|
superslow_loopCounter++; |
|
|
|
if(superslow_loopCounter > 1400){ // every 7 minutes |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if(g.rc_3.control_in == 0 && g.compass_enabled){ |
|
compass.save_offsets(); |
|
superslow_loopCounter = 0; |
|
} |
|
#endif |
|
} |
|
break; |
|
|
|
case 1: |
|
slow_loopCounter++; |
|
|
|
// Read 3-position switch on radio |
|
// ------------------------------- |
|
read_control_switch(); |
|
|
|
// Read main battery voltage if hooked up - does not read the 5v from radio |
|
// ------------------------------------------------------------------------ |
|
#if BATTERY_EVENT == 1 |
|
read_battery(); |
|
#endif |
|
|
|
break; |
|
|
|
case 2: |
|
slow_loopCounter = 0; |
|
update_events(); |
|
|
|
// blink if we are armed |
|
update_motor_light(); |
|
|
|
// XXX this should be a "GCS slow loop" interface |
|
#if GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK |
|
gcs.data_stream_send(1,5); |
|
// send all requested output streams with rates requested |
|
// between 1 and 5 Hz |
|
#else |
|
gcs.send_message(MSG_LOCATION); |
|
#endif |
|
|
|
|
|
break; |
|
|
|
default: |
|
slow_loopCounter = 0; |
|
break; |
|
|
|
} |
|
} |
|
|
|
// 1Hz loop |
|
void super_slow_loop() |
|
{ |
|
if (g.log_bitmask & MASK_LOG_CUR) |
|
Log_Write_Current(); |
|
|
|
gcs.send_message(MSG_HEARTBEAT); // XXX This is running at 3 1/3 Hz instead of 1 Hz |
|
// gcs.send_message(MSG_CPU_LOAD, load*100); |
|
|
|
} |
|
|
|
void update_GPS(void) |
|
{ |
|
g_gps->update(); |
|
update_GPS_light(); |
|
|
|
if (g_gps->new_data && g_gps->fix) { |
|
GPS_failure_counter = 3; |
|
|
|
// XXX We should be sending GPS data off one of the regular loops so that we send |
|
// no-GPS-fix data too |
|
#if GCS_PROTOCOL != GCS_PROTOCOL_MAVLINK |
|
gcs.send_message(MSG_LOCATION); |
|
#endif |
|
|
|
// for performance |
|
// --------------- |
|
gps_fix_count++; |
|
|
|
if(ground_start_count > 1){ |
|
ground_start_count--; |
|
|
|
} else if (ground_start_count == 1) { |
|
|
|
// We countdown N number of good GPS fixes |
|
// so that the altitude is more accurate |
|
// ------------------------------------- |
|
if (current_loc.lat == 0) { |
|
SendDebugln("!! bad loc"); |
|
ground_start_count = 5; |
|
|
|
}else{ |
|
//Serial.printf("init Home!"); |
|
|
|
if (g.log_bitmask & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
|
|
// reset our nav loop timer |
|
//nav_loopTimer = millis(); |
|
init_home(); |
|
|
|
// init altitude |
|
current_loc.alt = g_gps->altitude; |
|
ground_start_count = 0; |
|
} |
|
} |
|
|
|
current_loc.lng = g_gps->longitude; // Lon * 10 * *7 |
|
current_loc.lat = g_gps->latitude; // Lat * 10 * *7 |
|
|
|
}else{ |
|
if(GPS_failure_counter > 0) |
|
GPS_failure_counter--; |
|
} |
|
} |
|
|
|
void update_current_flight_mode(void) |
|
{ |
|
if(control_mode == AUTO){ |
|
|
|
switch(command_must_ID){ |
|
//case MAV_CMD_NAV_TAKEOFF: |
|
// break; |
|
|
|
//case MAV_CMD_NAV_LAND: |
|
// break; |
|
|
|
default: |
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
auto_yaw(); |
|
|
|
// mix in user control |
|
control_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
|
|
// apply throttle control |
|
output_auto_throttle(); |
|
break; |
|
} |
|
|
|
}else{ |
|
|
|
switch(control_mode){ |
|
case ACRO: |
|
// clear any AP naviagtion values |
|
nav_pitch = 0; |
|
nav_roll = 0; |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
|
|
// Yaw control |
|
output_manual_yaw(); |
|
|
|
// apply throttle control |
|
output_manual_throttle(); |
|
|
|
// mix in user control |
|
control_nav_mixer(); |
|
|
|
// perform rate or stabilzation |
|
// ---------------------------- |
|
|
|
// Roll control |
|
if(abs(g.rc_1.control_in) >= ACRO_RATE_TRIGGER){ |
|
output_rate_roll(); // rate control yaw |
|
}else{ |
|
output_stabilize_roll(); // hold yaw |
|
} |
|
|
|
// Roll control |
|
if(abs(g.rc_2.control_in) >= ACRO_RATE_TRIGGER){ |
|
output_rate_pitch(); // rate control yaw |
|
}else{ |
|
output_stabilize_pitch(); // hold yaw |
|
} |
|
break; |
|
|
|
//case LOITER: |
|
case STABILIZE: |
|
// clear any AP naviagtion values |
|
nav_pitch = 0; |
|
nav_roll = 0; |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
|
|
// Yaw control |
|
output_manual_yaw(); |
|
|
|
// apply throttle control |
|
output_manual_throttle(); |
|
|
|
// mix in user control |
|
control_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
case SIMPLE: |
|
fbw_timer++; |
|
// 25 hz |
|
if(fbw_timer > 4){ |
|
fbw_timer = 0; |
|
|
|
current_loc.lat = 0; |
|
current_loc.lng = 0; |
|
|
|
next_WP.lng = (float)g.rc_1.control_in *.4; // X: 4500 / 2 = 2250 = 25 meteres |
|
next_WP.lat = -((float)g.rc_2.control_in *.4); // Y: 4500 / 2 = 2250 = 25 meteres |
|
|
|
// calc a new bearing |
|
nav_bearing = get_bearing(¤t_loc, &next_WP) + initial_simple_bearing; |
|
nav_bearing = wrap_360(nav_bearing); |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
calc_bearing_error(); |
|
/* |
|
Serial.printf("lat: %ld lon:%ld, bear:%ld, dist:%ld, init:%ld, err:%ld ", |
|
next_WP.lat, |
|
next_WP.lng, |
|
nav_bearing, |
|
wp_distance, |
|
initial_simple_bearing, |
|
bearing_error); |
|
*/ |
|
// get nav_pitch and nav_roll |
|
calc_waypoint_nav(); |
|
} |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
// Yaw control |
|
output_manual_yaw(); |
|
|
|
// apply throttle control |
|
output_manual_throttle(); |
|
|
|
// apply nav_pitch and nav_roll to output |
|
fbw_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
case FBW: |
|
// we are currently using manual throttle during alpha testing. |
|
fbw_timer++; |
|
|
|
// 10 hz |
|
if(fbw_timer > 10){ |
|
fbw_timer = 0; |
|
|
|
if(GPS_disabled){ |
|
current_loc.lat = home.lat = 0; |
|
current_loc.lng = home.lng = 0; |
|
} |
|
|
|
next_WP.lng = home.lng + g.rc_1.control_in / 2; // X: 4500 / 2 = 2250 = 25 meteres |
|
next_WP.lat = home.lat - g.rc_2.control_in / 2; // Y: 4500 / 2 = 2250 = 25 meteres |
|
|
|
calc_loiter_nav(); |
|
} |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
|
|
// REMOVE AFTER TESTING !!! |
|
//nav_yaw = dcm.yaw_sensor; |
|
|
|
// Yaw control |
|
output_manual_yaw(); |
|
|
|
// apply throttle control |
|
output_manual_throttle(); |
|
|
|
// apply nav_pitch and nav_roll to output |
|
fbw_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
case ALT_HOLD: |
|
// clear any AP naviagtion values |
|
nav_pitch = 0; |
|
nav_roll = 0; |
|
|
|
//if(g.rc_3.control_in) |
|
// get desired height from the throttle |
|
next_WP.alt = home.alt + (g.rc_3.control_in); // 0 - 1000 (40 meters) |
|
next_WP.alt = max(next_WP.alt, 30); |
|
|
|
// !!! testing |
|
//next_WP.alt -= 500; |
|
|
|
// Yaw control |
|
// ----------- |
|
output_manual_yaw(); |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
// apply throttle control |
|
output_auto_throttle(); |
|
|
|
// mix in user control |
|
control_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
case RTL: |
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
auto_yaw(); |
|
|
|
// apply throttle control |
|
output_auto_throttle(); |
|
|
|
// mix in user control with Nav control |
|
control_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
case LOITER: |
|
|
|
// Yaw control |
|
// ----------- |
|
output_manual_yaw(); |
|
|
|
// Output Pitch, Roll, Yaw and Throttle |
|
// ------------------------------------ |
|
|
|
// apply throttle control |
|
output_auto_throttle(); |
|
|
|
// mix in user control with Nav control |
|
control_nav_mixer(); |
|
|
|
// perform stabilzation |
|
output_stabilize_roll(); |
|
output_stabilize_pitch(); |
|
break; |
|
|
|
default: |
|
//Serial.print("$"); |
|
break; |
|
|
|
} |
|
} |
|
} |
|
|
|
// called after a GPS read |
|
void update_navigation() |
|
{ |
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS |
|
// ------------------------------------------------------------------------ |
|
|
|
// distance and bearing calcs only |
|
if(control_mode == AUTO || control_mode == GCS_AUTO){ |
|
verify_commands(); |
|
|
|
}else{ |
|
switch(control_mode){ |
|
case RTL: |
|
update_crosstrack(); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
void read_AHRS(void) |
|
{ |
|
// Perform IMU calculations and get attitude info |
|
//----------------------------------------------- |
|
dcm.update_DCM(G_Dt); |
|
omega = dcm.get_gyro(); |
|
|
|
// Testing remove !!! |
|
//dcm.pitch_sensor = 0; |
|
//dcm.roll_sensor = 0; |
|
} |
|
|
|
void update_trig(void){ |
|
Vector2f yawvector; |
|
Matrix3f temp = dcm.get_dcm_matrix(); |
|
|
|
yawvector.x = temp.a.x; // sin |
|
yawvector.y = temp.b.x; // cos |
|
yawvector.normalize(); |
|
|
|
cos_yaw_x = yawvector.y; // 0 x = north |
|
sin_yaw_y = yawvector.x; // 1 y |
|
|
|
sin_pitch_y = -temp.c.x; |
|
cos_pitch_x = sqrt(1 - (temp.c.x * temp.c.x)); |
|
|
|
cos_roll_x = temp.c.z / cos_pitch_x; |
|
sin_roll_y = temp.c.y / cos_pitch_x; |
|
} |
|
|
|
|
|
void update_alt() |
|
{ |
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
current_loc.alt = g_gps->altitude; |
|
#else |
|
altitude_sensor = BARO; |
|
baro_alt = read_barometer(); |
|
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt); |
|
|
|
if(g.sonar_enabled){ |
|
// decide which sensor we're usings |
|
sonar_alt = sonar.read(); |
|
|
|
if(baro_alt < 550){ |
|
altitude_sensor = SONAR; |
|
} |
|
|
|
if(sonar_alt > 600){ |
|
altitude_sensor = BARO; |
|
} |
|
|
|
//altitude_sensor = (target_altitude > (home.alt + 500)) ? BARO : SONAR; |
|
|
|
if(altitude_sensor == BARO){ |
|
current_loc.alt = baro_alt + home.alt; |
|
}else{ |
|
sonar_alt = min(sonar_alt, 600); |
|
current_loc.alt = sonar_alt + home.alt; |
|
} |
|
|
|
}else{ |
|
|
|
// no sonar altitude |
|
current_loc.alt = baro_alt + home.alt; |
|
} |
|
//Serial.printf("b_alt: %ld, home: %ld ", baro_alt, home.alt); |
|
#endif |
|
|
|
// altitude smoothing |
|
// ------------------ |
|
calc_altitude_smoothing_error(); |
|
|
|
|
|
//calc_altitude_error(); |
|
|
|
// Amount of throttle to apply for hovering |
|
// ---------------------------------------- |
|
calc_nav_throttle(); |
|
}
|
|
|