You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
13 KiB
334 lines
13 KiB
#include "mode.h" |
|
#include "Rover.h" |
|
|
|
#define MODE_AHRS_GPS_ERROR_MAX 10 // accept up to 10m difference between AHRS and GPS |
|
|
|
Mode::Mode() : |
|
ahrs(rover.ahrs), |
|
g(rover.g), |
|
g2(rover.g2), |
|
channel_steer(rover.channel_steer), |
|
channel_throttle(rover.channel_throttle), |
|
mission(rover.mission), |
|
attitude_control(rover.g2.attitude_control) |
|
{ } |
|
|
|
void Mode::exit() |
|
{ |
|
// call sub-classes exit |
|
_exit(); |
|
|
|
lateral_acceleration = 0.0f; |
|
} |
|
|
|
// these are basically the same checks as in AP_Arming: |
|
bool Mode::enter_gps_checks() const |
|
{ |
|
const AP_GPS &gps = AP::gps(); |
|
|
|
if (gps.status() < AP_GPS::GPS_OK_FIX_3D) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "Bad GPS Position"); |
|
return false; |
|
} |
|
//GPS update rate acceptable |
|
if (!gps.is_healthy()) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS is not healthy"); |
|
} |
|
|
|
// check GPSs are within 50m of each other and that blending is healthy |
|
float distance_m; |
|
if (!gps.all_consistent(distance_m)) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, |
|
"GPS positions differ by %4.1fm", |
|
(double)distance_m); |
|
return false; |
|
} |
|
if (!gps.blend_health_check()) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS blending unhealthy"); |
|
return false; |
|
} |
|
|
|
// check AHRS and GPS are within 10m of each other |
|
const Location gps_loc = gps.location(); |
|
Location ahrs_loc; |
|
if (ahrs.get_position(ahrs_loc)) { |
|
float distance = location_3d_diff_NED(gps_loc, ahrs_loc).length(); |
|
if (distance > MODE_AHRS_GPS_ERROR_MAX) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "GPS and AHRS differ by %4.1fm", (double)distance); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool Mode::enter() |
|
{ |
|
const bool ignore_checks = !hal.util->get_soft_armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform |
|
if (!ignore_checks) { |
|
if (requires_gps() && !enter_gps_checks()) { |
|
return false; |
|
} |
|
} |
|
|
|
return _enter(); |
|
} |
|
|
|
void Mode::get_pilot_desired_steering_and_throttle(float &steering_out, float &throttle_out) |
|
{ |
|
// no RC input means no throttle and centered steering |
|
if (rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) { |
|
steering_out = 0; |
|
throttle_out = 0; |
|
return; |
|
} |
|
|
|
// apply RC skid steer mixing |
|
switch ((enum pilot_steer_type_t)rover.g.pilot_steer_type.get()) |
|
{ |
|
case PILOT_STEER_TYPE_DEFAULT: |
|
default: { |
|
// by default regular and skid-steering vehicles reverse their rotation direction when backing up |
|
// (this is the same as PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING below) |
|
throttle_out = rover.channel_throttle->get_control_in(); |
|
steering_out = rover.channel_steer->get_control_in(); |
|
break; |
|
} |
|
|
|
case PILOT_STEER_TYPE_TWO_PADDLES: { |
|
// convert the two radio_in values from skid steering values |
|
// left paddle from steering input channel, right paddle from throttle input channel |
|
// steering = left-paddle - right-paddle |
|
// throttle = average(left-paddle, right-paddle) |
|
const float left_paddle = rover.channel_steer->norm_input(); |
|
const float right_paddle = rover.channel_throttle->norm_input(); |
|
|
|
throttle_out = 0.5f * (left_paddle + right_paddle) * 100.0f; |
|
|
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1; |
|
steering_out = steering_dir * (left_paddle - right_paddle) * 4500.0f; |
|
break; |
|
} |
|
|
|
case PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING: |
|
throttle_out = rover.channel_throttle->get_control_in(); |
|
steering_out = rover.channel_steer->get_control_in(); |
|
break; |
|
|
|
case PILOT_STEER_TYPE_DIR_UNCHANGED_WHEN_REVERSING: { |
|
throttle_out = rover.channel_throttle->get_control_in(); |
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1; |
|
steering_out = steering_dir * rover.channel_steer->get_control_in(); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// set desired location |
|
void Mode::set_desired_location(const struct Location& destination, float next_leg_bearing_cd) |
|
{ |
|
// record targets |
|
_origin = rover.current_loc; |
|
_destination = destination; |
|
_desired_speed = g.speed_cruise; |
|
|
|
// initialise distance |
|
_distance_to_destination = get_distance(_origin, _destination); |
|
_reached_destination = false; |
|
|
|
// set final desired speed |
|
_desired_speed_final = 0.0f; |
|
if (!is_equal(next_leg_bearing_cd, MODE_NEXT_HEADING_UNKNOWN)) { |
|
// if not turning can continue at full speed |
|
if (is_zero(next_leg_bearing_cd)) { |
|
_desired_speed_final = _desired_speed; |
|
} else { |
|
// calculate maximum speed that keeps overshoot within bounds |
|
const float curr_leg_bearing_cd = get_bearing_cd(_origin, _destination); |
|
const float turn_angle_cd = wrap_180_cd(next_leg_bearing_cd - curr_leg_bearing_cd); |
|
const float radius_m = fabsf(g.waypoint_overshoot / (cosf(radians(turn_angle_cd * 0.01f)) - 1.0f)); |
|
_desired_speed_final = MIN(_desired_speed, safe_sqrt(g.turn_max_g * GRAVITY_MSS * radius_m)); |
|
} |
|
} |
|
} |
|
|
|
// set desired heading and speed |
|
void Mode::set_desired_heading_and_speed(float yaw_angle_cd, float target_speed) |
|
{ |
|
// handle initialisation |
|
_reached_destination = false; |
|
|
|
// record targets |
|
_desired_yaw_cd = yaw_angle_cd; |
|
_desired_speed = target_speed; |
|
} |
|
|
|
void Mode::calc_throttle(float target_speed, bool nudge_allowed) |
|
{ |
|
// add in speed nudging |
|
if (nudge_allowed) { |
|
target_speed = calc_speed_nudge(target_speed, g.speed_cruise, g.throttle_cruise * 0.01f); |
|
} |
|
|
|
// call throttle controller and convert output to -100 to +100 range |
|
float throttle_out = 100.0f * attitude_control.get_throttle_out_speed(target_speed, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f); |
|
|
|
// send to motor |
|
g2.motors.set_throttle(throttle_out); |
|
} |
|
|
|
// performs a controlled stop with steering centered |
|
bool Mode::stop_vehicle() |
|
{ |
|
// call throttle controller and convert output to -100 to +100 range |
|
bool stopped = false; |
|
float throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, stopped); |
|
|
|
// send to motor |
|
g2.motors.set_throttle(throttle_out); |
|
|
|
// do not attempt to steer |
|
g2.motors.set_steering(0.0f); |
|
|
|
// return true once stopped |
|
return stopped; |
|
} |
|
|
|
// estimate maximum vehicle speed (in m/s) |
|
float Mode::calc_speed_max(float cruise_speed, float cruise_throttle) |
|
{ |
|
float speed_max; |
|
|
|
// sanity checks |
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) { |
|
speed_max = cruise_speed; |
|
} else { |
|
// project vehicle's maximum speed |
|
speed_max = (1.0f / cruise_throttle) * cruise_speed; |
|
} |
|
|
|
// constrain to 30m/s (108km/h) and return |
|
return constrain_float(speed_max, 0.0f, 30.0f); |
|
} |
|
|
|
// calculate pilot input to nudge speed up or down |
|
// target_speed should be in meters/sec |
|
// cruise_speed is vehicle's cruising speed, cruise_throttle is the throttle (from -1 to +1) that achieves the cruising speed |
|
// return value is a new speed (in m/s) which up to the projected maximum speed based on the cruise speed and cruise throttle |
|
float Mode::calc_speed_nudge(float target_speed, float cruise_speed, float cruise_throttle) |
|
{ |
|
// return immediately if pilot is not attempting to nudge speed |
|
// pilot can nudge up speed if throttle (in range -100 to +100) is above 50% of center in direction of travel |
|
const int16_t pilot_throttle = constrain_int16(rover.channel_throttle->get_control_in(), -100, 100); |
|
if (((pilot_throttle <= 50) && (target_speed >= 0.0f)) || |
|
((pilot_throttle >= -50) && (target_speed <= 0.0f))) { |
|
return target_speed; |
|
} |
|
|
|
// sanity checks |
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) { |
|
return target_speed; |
|
} |
|
|
|
// project vehicle's maximum speed |
|
const float vehicle_speed_max = calc_speed_max(cruise_speed, cruise_throttle); |
|
|
|
// return unadjusted target if already over vehicle's projected maximum speed |
|
if (target_speed >= vehicle_speed_max) { |
|
return target_speed; |
|
} |
|
|
|
const float speed_increase_max = vehicle_speed_max - fabsf(target_speed); |
|
float speed_nudge = ((static_cast<float>(abs(pilot_throttle)) - 50.0f) * 0.02f) * speed_increase_max; |
|
if (pilot_throttle < 0) { |
|
speed_nudge = -speed_nudge; |
|
} |
|
|
|
return target_speed + speed_nudge; |
|
} |
|
|
|
// calculated a reduced speed(in m/s) based on yaw error and lateral acceleration and/or distance to a waypoint |
|
// should be called after calc_lateral_acceleration and before calc_throttle |
|
// relies on these internal members being updated: lateral_acceleration, _yaw_error_cd, _distance_to_destination |
|
float Mode::calc_reduced_speed_for_turn_or_distance(float desired_speed) |
|
{ |
|
// this method makes use the following internal variables |
|
const float yaw_error_cd = _yaw_error_cd; |
|
const float target_lateral_accel_G = lateral_acceleration; |
|
const float distance_to_waypoint = _distance_to_destination; |
|
|
|
// calculate the yaw_error_ratio which is the error (capped at 90degrees) expressed as a ratio (from 0 ~ 1) |
|
float yaw_error_ratio = constrain_float(fabsf(yaw_error_cd / 9000.0f), 0.0f, 1.0f); |
|
|
|
// apply speed_turn_gain parameter (expressed as a percentage) to yaw_error_ratio |
|
yaw_error_ratio *= (100 - g.speed_turn_gain) * 0.01f; |
|
|
|
// calculate absolute lateral acceleration expressed as a ratio (from 0 ~ 1) of the vehicle's maximum lateral acceleration |
|
const float lateral_accel_ratio = constrain_float(fabsf(target_lateral_accel_G / (g.turn_max_g * GRAVITY_MSS)), 0.0f, 1.0f); |
|
|
|
// calculate a lateral acceleration based speed scaling |
|
const float lateral_accel_speed_scaling = 1.0f - lateral_accel_ratio * yaw_error_ratio; |
|
|
|
// calculate a pivot steering based speed scaling (default to no reduction) |
|
float pivot_speed_scaling = 1.0f; |
|
if (rover.use_pivot_steering(yaw_error_cd)) { |
|
pivot_speed_scaling = 0.0f; |
|
} |
|
|
|
// scaled speed |
|
float speed_scaled = desired_speed * MIN(lateral_accel_speed_scaling, pivot_speed_scaling); |
|
|
|
// limit speed based on distance to waypoint and max acceleration/deceleration |
|
if (is_positive(distance_to_waypoint) && is_positive(attitude_control.get_accel_max())) { |
|
const float speed_max = safe_sqrt(2.0f * distance_to_waypoint * attitude_control.get_accel_max() + sq(_desired_speed_final)); |
|
speed_scaled = constrain_float(speed_scaled, -speed_max, speed_max); |
|
} |
|
|
|
// return minimum speed |
|
return speed_scaled; |
|
} |
|
|
|
// calculate the lateral acceleration target to cause the vehicle to drive along the path from origin to destination |
|
// this function update lateral_acceleration and _yaw_error_cd members |
|
void Mode::calc_steering_to_waypoint(const struct Location &origin, const struct Location &destination, bool reversed) |
|
{ |
|
// Calculate the required turn of the wheels |
|
// negative error = left turn |
|
// positive error = right turn |
|
rover.nav_controller->set_reverse(reversed); |
|
rover.nav_controller->update_waypoint(origin, destination); |
|
lateral_acceleration = rover.nav_controller->lateral_acceleration(); |
|
if (reversed) { |
|
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor + 18000); |
|
} else { |
|
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor); |
|
} |
|
if (rover.use_pivot_steering(_yaw_error_cd)) { |
|
if (_yaw_error_cd >= 0.0f) { |
|
lateral_acceleration = g.turn_max_g * GRAVITY_MSS; |
|
} else { |
|
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS; |
|
} |
|
} |
|
|
|
// call lateral acceleration to steering controller |
|
calc_steering_from_lateral_acceleration(reversed); |
|
} |
|
|
|
/* |
|
calculate steering output given lateral_acceleration |
|
*/ |
|
void Mode::calc_steering_from_lateral_acceleration(bool reversed) |
|
{ |
|
// add obstacle avoidance response to lateral acceleration target |
|
if (!reversed) { |
|
lateral_acceleration += (rover.obstacle.turn_angle / 45.0f) * g.turn_max_g; |
|
} |
|
|
|
// constrain to max G force |
|
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g * GRAVITY_MSS, g.turn_max_g * GRAVITY_MSS); |
|
|
|
// send final steering command to motor library |
|
float steering_out = attitude_control.get_steering_out_lat_accel(lateral_acceleration, g2.motors.have_skid_steering(), g2.motors.limit.steer_left, g2.motors.limit.steer_right, reversed); |
|
g2.motors.set_steering(steering_out * 4500.0f); |
|
}
|
|
|