You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
837 lines
28 KiB
837 lines
28 KiB
#include "Copter.h" |
|
|
|
// performs pre-arm checks. expects to be called at 1hz. |
|
void AP_Arming_Copter::update(void) |
|
{ |
|
// perform pre-arm checks & display failures every 30 seconds |
|
static uint8_t pre_arm_display_counter = PREARM_DISPLAY_PERIOD/2; |
|
pre_arm_display_counter++; |
|
bool display_fail = false; |
|
if (pre_arm_display_counter >= PREARM_DISPLAY_PERIOD) { |
|
display_fail = true; |
|
pre_arm_display_counter = 0; |
|
} |
|
|
|
pre_arm_checks(display_fail); |
|
} |
|
|
|
bool AP_Arming_Copter::pre_arm_checks(bool display_failure) |
|
{ |
|
const bool passed = run_pre_arm_checks(display_failure); |
|
set_pre_arm_check(passed); |
|
return passed; |
|
} |
|
|
|
// perform pre-arm checks |
|
// return true if the checks pass successfully |
|
bool AP_Arming_Copter::run_pre_arm_checks(bool display_failure) |
|
{ |
|
// exit immediately if already armed |
|
if (copter.motors->armed()) { |
|
return true; |
|
} |
|
|
|
// check if motor interlock and Emergency Stop aux switches are used |
|
// at the same time. This cannot be allowed. |
|
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) && |
|
rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)){ |
|
check_failed(display_failure, "Interlock/E-Stop Conflict"); |
|
return false; |
|
} |
|
|
|
// check if motor interlock aux switch is in use |
|
// if it is, switch needs to be in disabled position to arm |
|
// otherwise exit immediately. This check to be repeated, |
|
// as state can change at any time. |
|
if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) { |
|
check_failed(display_failure, "Motor Interlock Enabled"); |
|
} |
|
|
|
// if pre arm checks are disabled run only the mandatory checks |
|
if (checks_to_perform == 0) { |
|
return mandatory_checks(display_failure); |
|
} |
|
|
|
return fence_checks(display_failure) |
|
& parameter_checks(display_failure) |
|
& motor_checks(display_failure) |
|
& pilot_throttle_checks(display_failure) |
|
& oa_checks(display_failure) & |
|
AP_Arming::pre_arm_checks(display_failure); |
|
} |
|
|
|
bool AP_Arming_Copter::barometer_checks(bool display_failure) |
|
{ |
|
if (!AP_Arming::barometer_checks(display_failure)) { |
|
return false; |
|
} |
|
|
|
bool ret = true; |
|
// check Baro |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_BARO)) { |
|
// Check baro & inav alt are within 1m if EKF is operating in an absolute position mode. |
|
// Do not check if intending to operate in a ground relative height mode as EKF will output a ground relative height |
|
// that may differ from the baro height due to baro drift. |
|
nav_filter_status filt_status = copter.inertial_nav.get_filter_status(); |
|
bool using_baro_ref = (!filt_status.flags.pred_horiz_pos_rel && filt_status.flags.pred_horiz_pos_abs); |
|
if (using_baro_ref) { |
|
if (fabsf(copter.inertial_nav.get_altitude() - copter.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) { |
|
check_failed(ARMING_CHECK_BARO, display_failure, "Altitude disparity"); |
|
ret = false; |
|
} |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
bool AP_Arming_Copter::compass_checks(bool display_failure) |
|
{ |
|
bool ret = AP_Arming::compass_checks(display_failure); |
|
|
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_COMPASS)) { |
|
// check compass offsets have been set. AP_Arming only checks |
|
// this if learning is off; Copter *always* checks. |
|
if (!AP::compass().configured()) { |
|
check_failed(ARMING_CHECK_COMPASS, display_failure, "Compass not calibrated"); |
|
ret = false; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
bool AP_Arming_Copter::ins_checks(bool display_failure) |
|
{ |
|
bool ret = AP_Arming::ins_checks(display_failure); |
|
|
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) { |
|
|
|
// get ekf attitude (if bad, it's usually the gyro biases) |
|
if (!pre_arm_ekf_attitude_check()) { |
|
check_failed(ARMING_CHECK_INS, display_failure, "EKF attitude is bad"); |
|
ret = false; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
bool AP_Arming_Copter::board_voltage_checks(bool display_failure) |
|
{ |
|
if (!AP_Arming::board_voltage_checks(display_failure)) { |
|
return false; |
|
} |
|
|
|
// check battery voltage |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_VOLTAGE)) { |
|
if (copter.battery.has_failsafed()) { |
|
check_failed(ARMING_CHECK_VOLTAGE, display_failure, "Battery failsafe"); |
|
return false; |
|
} |
|
|
|
// call parent battery checks |
|
if (!AP_Arming::battery_checks(display_failure)) { |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool AP_Arming_Copter::parameter_checks(bool display_failure) |
|
{ |
|
// check various parameter values |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) { |
|
|
|
// ensure all rc channels have different functions |
|
if (rc().duplicate_options_exist()) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Duplicate Aux Switch Options"); |
|
return false; |
|
} |
|
|
|
// failsafe parameter checks |
|
if (copter.g.failsafe_throttle) { |
|
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 |
|
if (copter.channel_throttle->get_radio_min() <= copter.g.failsafe_throttle_value+10 || copter.g.failsafe_throttle_value < 910) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check FS_THR_VALUE"); |
|
return false; |
|
} |
|
} |
|
|
|
// lean angle parameter check |
|
if (copter.aparm.angle_max < 1000 || copter.aparm.angle_max > 8000) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check ANGLE_MAX"); |
|
return false; |
|
} |
|
|
|
// acro balance parameter check |
|
#if MODE_ACRO_ENABLED == ENABLED || MODE_SPORT_ENABLED == ENABLED |
|
if ((copter.g.acro_balance_roll > copter.attitude_control->get_angle_roll_p().kP()) || (copter.g.acro_balance_pitch > copter.attitude_control->get_angle_pitch_p().kP())) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ACRO_BAL_ROLL/PITCH"); |
|
return false; |
|
} |
|
#endif |
|
|
|
// pilot-speed-up parameter check |
|
if (copter.g.pilot_speed_up <= 0) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Check PILOT_SPEED_UP"); |
|
return false; |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD && |
|
copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL && |
|
copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid Heli FRAME_CLASS"); |
|
return false; |
|
} |
|
|
|
// check helicopter parameters |
|
if (!copter.motors->parameter_check(display_failure)) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Heli motors checks failed"); |
|
return false; |
|
} |
|
|
|
char fail_msg[50]; |
|
// check input mangager parameters |
|
if (!copter.input_manager.parameter_check(fail_msg, ARRAY_SIZE(fail_msg))) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "%s", fail_msg); |
|
return false; |
|
} |
|
|
|
// Inverted flight feature disabled for Heli Single and Dual frames |
|
if (copter.g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_QUAD && |
|
rc().find_channel_for_option(RC_Channel::aux_func_t::INVERTED) != nullptr) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Inverted flight option not supported"); |
|
return false; |
|
} |
|
// Ensure an Aux Channel is configured for motor interlock |
|
if (rc().find_channel_for_option(RC_Channel::aux_func_t::MOTOR_INTERLOCK) == nullptr) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Motor Interlock not configured"); |
|
return false; |
|
} |
|
|
|
#else |
|
if (copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_QUAD || |
|
copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI_DUAL || |
|
copter.g2.frame_class.get() == AP_Motors::MOTOR_FRAME_HELI) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Invalid MultiCopter FRAME_CLASS"); |
|
return false; |
|
} |
|
#endif // HELI_FRAME |
|
|
|
// check for missing terrain data |
|
if (!pre_arm_terrain_check(display_failure)) { |
|
return false; |
|
} |
|
|
|
// check adsb avoidance failsafe |
|
#if ADSB_ENABLED == ENABLE |
|
if (copter.failsafe.adsb) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "ADSB threat detected"); |
|
return false; |
|
} |
|
#endif |
|
|
|
// ensure controllers are OK with us arming: |
|
char failure_msg[50]; |
|
if (!copter.pos_control->pre_arm_checks("PSC", failure_msg, ARRAY_SIZE(failure_msg))) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg); |
|
return false; |
|
} |
|
if (!copter.attitude_control->pre_arm_checks("ATC", failure_msg, ARRAY_SIZE(failure_msg))) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Bad parameter: %s", failure_msg); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// check motor setup was successful |
|
bool AP_Arming_Copter::motor_checks(bool display_failure) |
|
{ |
|
// check motors initialised correctly |
|
if (!copter.motors->initialised_ok()) { |
|
check_failed(display_failure, "check firmware or FRAME_CLASS"); |
|
return false; |
|
} |
|
|
|
// if this is a multicopter using ToshibaCAN ESCs ensure MOT_PMW_MIN = 1000, MOT_PWM_MAX = 2000 |
|
#if HAL_WITH_UAVCAN && (FRAME_CONFIG != HELI_FRAME) |
|
bool tcan_active = false; |
|
const uint8_t num_drivers = AP::can().get_num_drivers(); |
|
for (uint8_t i = 0; i < num_drivers; i++) { |
|
if (AP::can().get_protocol_type(i) == AP_BoardConfig_CAN::Protocol_Type_ToshibaCAN) { |
|
tcan_active = true; |
|
} |
|
} |
|
if (tcan_active) { |
|
if (copter.motors->get_pwm_output_min() != 1000) { |
|
check_failed(display_failure, "TCAN ESCs require MOT_PWM_MIN=1000"); |
|
return false; |
|
} |
|
if (copter.motors->get_pwm_output_max() != 2000) { |
|
check_failed(display_failure, "TCAN ESCs require MOT_PWM_MAX=2000"); |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
return true; |
|
} |
|
|
|
bool AP_Arming_Copter::pilot_throttle_checks(bool display_failure) |
|
{ |
|
// check throttle is above failsafe throttle |
|
// this is near the bottom to allow other failures to be displayed before checking pilot throttle |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) { |
|
if (copter.g.failsafe_throttle != FS_THR_DISABLED && copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
const char *failmsg = "Collective below Failsafe"; |
|
#else |
|
const char *failmsg = "Throttle below Failsafe"; |
|
#endif |
|
check_failed(ARMING_CHECK_RC, display_failure, "%s", failmsg); |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool AP_Arming_Copter::oa_checks(bool display_failure) |
|
{ |
|
#if AC_OAPATHPLANNER_ENABLED == ENABLED |
|
char failure_msg[50]; |
|
if (copter.g2.oa.pre_arm_check(failure_msg, ARRAY_SIZE(failure_msg))) { |
|
return true; |
|
} |
|
// display failure |
|
if (strlen(failure_msg) == 0) { |
|
check_failed(display_failure, "%s", "Check Object Avoidance"); |
|
} else { |
|
check_failed(display_failure, "%s", failure_msg); |
|
} |
|
return false; |
|
#else |
|
return true; |
|
#endif |
|
} |
|
|
|
bool AP_Arming_Copter::rc_calibration_checks(bool display_failure) |
|
{ |
|
const RC_Channel *channels[] = { |
|
copter.channel_roll, |
|
copter.channel_pitch, |
|
copter.channel_throttle, |
|
copter.channel_yaw |
|
}; |
|
|
|
copter.ap.pre_arm_rc_check = rc_checks_copter_sub(display_failure, channels) |
|
& AP_Arming::rc_calibration_checks(display_failure); |
|
|
|
return copter.ap.pre_arm_rc_check; |
|
} |
|
|
|
// performs pre_arm gps related checks and returns true if passed |
|
bool AP_Arming_Copter::gps_checks(bool display_failure) |
|
{ |
|
// run mandatory gps checks first |
|
if (!mandatory_gps_checks(display_failure)) { |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// check if flight mode requires GPS |
|
bool mode_requires_gps = copter.flightmode->requires_GPS(); |
|
|
|
// check if fence requires GPS |
|
bool fence_requires_gps = false; |
|
#if AC_FENCE == ENABLED |
|
// if circular or polygon fence is enabled we need GPS |
|
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0; |
|
#endif |
|
|
|
// return true if GPS is not required |
|
if (!mode_requires_gps && !fence_requires_gps) { |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// return true immediately if gps check is disabled |
|
if (!(checks_to_perform == ARMING_CHECK_ALL || checks_to_perform & ARMING_CHECK_GPS)) { |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// warn about hdop separately - to prevent user confusion with no gps lock |
|
if (copter.gps.get_hdop() > copter.g.gps_hdop_good) { |
|
check_failed(ARMING_CHECK_GPS, display_failure, "High GPS HDOP"); |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// call parent gps checks |
|
if (!AP_Arming::gps_checks(display_failure)) { |
|
AP_Notify::flags.pre_arm_gps_check = false; |
|
return false; |
|
} |
|
|
|
// if we got here all must be ok |
|
AP_Notify::flags.pre_arm_gps_check = true; |
|
return true; |
|
} |
|
|
|
// check ekf attitude is acceptable |
|
bool AP_Arming_Copter::pre_arm_ekf_attitude_check() |
|
{ |
|
// get ekf filter status |
|
nav_filter_status filt_status = copter.inertial_nav.get_filter_status(); |
|
|
|
return filt_status.flags.attitude; |
|
} |
|
|
|
// check we have required terrain data |
|
bool AP_Arming_Copter::pre_arm_terrain_check(bool display_failure) |
|
{ |
|
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN |
|
// succeed if not using terrain data |
|
if (!copter.terrain_use()) { |
|
return true; |
|
} |
|
|
|
// check if terrain following is enabled, using a range finder but RTL_ALT is higher than rangefinder's max range |
|
// To-Do: modify RTL return path to fly at or above the RTL_ALT and remove this check |
|
|
|
if (copter.rangefinder_state.enabled && (copter.g.rtl_altitude > copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270))) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "RTL_ALT above rangefinder max range"); |
|
return false; |
|
} |
|
|
|
// show terrain statistics |
|
uint16_t terr_pending, terr_loaded; |
|
copter.terrain.get_statistics(terr_pending, terr_loaded); |
|
bool have_all_data = (terr_pending <= 0); |
|
if (!have_all_data) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Waiting for Terrain data"); |
|
} |
|
return have_all_data; |
|
#else |
|
return true; |
|
#endif |
|
} |
|
|
|
// check nothing is too close to vehicle |
|
bool AP_Arming_Copter::proximity_checks(bool display_failure) const |
|
{ |
|
#if PROXIMITY_ENABLED == ENABLED |
|
|
|
if (!AP_Arming::proximity_checks(display_failure)) { |
|
return false; |
|
} |
|
|
|
if (!((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS))) { |
|
// check is disabled |
|
return true; |
|
} |
|
|
|
// get closest object if we might use it for avoidance |
|
#if AC_AVOID_ENABLED == ENABLED |
|
float angle_deg, distance; |
|
if (copter.avoid.proximity_avoidance_enabled() && copter.g2.proximity.get_closest_object(angle_deg, distance)) { |
|
// display error if something is within 60cm |
|
if (distance <= 0.6f) { |
|
check_failed(ARMING_CHECK_PARAMETERS, display_failure, "Proximity %d deg, %4.2fm", (int)angle_deg, (double)distance); |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
#endif |
|
return true; |
|
} |
|
|
|
// performs mandatory gps checks. returns true if passed |
|
bool AP_Arming_Copter::mandatory_gps_checks(bool display_failure) |
|
{ |
|
// always check if inertial nav has started and is ready |
|
const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); |
|
if (!ahrs.prearm_healthy()) { |
|
const char *reason = ahrs.prearm_failure_reason(); |
|
if (reason == nullptr) { |
|
reason = "AHRS not healthy"; |
|
} |
|
check_failed(display_failure, "%s", reason); |
|
return false; |
|
} |
|
|
|
// check if flight mode requires GPS |
|
bool mode_requires_gps = copter.flightmode->requires_GPS(); |
|
|
|
// check if fence requires GPS |
|
bool fence_requires_gps = false; |
|
#if AC_FENCE == ENABLED |
|
// if circular or polygon fence is enabled we need GPS |
|
fence_requires_gps = (copter.fence.get_enabled_fences() & (AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON)) > 0; |
|
#endif |
|
|
|
// return true if GPS is not required |
|
if (!mode_requires_gps && !fence_requires_gps) { |
|
return true; |
|
} |
|
|
|
// ensure GPS is ok |
|
if (!copter.position_ok()) { |
|
const char *reason = ahrs.prearm_failure_reason(); |
|
if (reason == nullptr) { |
|
if (!mode_requires_gps && fence_requires_gps) { |
|
// clarify to user why they need GPS in non-GPS flight mode |
|
reason = "Fence enabled, need 3D Fix"; |
|
} else { |
|
reason = "Need 3D Fix"; |
|
} |
|
} |
|
check_failed(display_failure, "%s", reason); |
|
return false; |
|
} |
|
|
|
// check for GPS glitch (as reported by EKF) |
|
nav_filter_status filt_status; |
|
if (ahrs.get_filter_status(filt_status)) { |
|
if (filt_status.flags.gps_glitching) { |
|
check_failed(display_failure, "GPS glitching"); |
|
return false; |
|
} |
|
} |
|
|
|
// check EKF compass variance is below failsafe threshold |
|
float vel_variance, pos_variance, hgt_variance, tas_variance; |
|
Vector3f mag_variance; |
|
Vector2f offset; |
|
ahrs.get_variances(vel_variance, pos_variance, hgt_variance, mag_variance, tas_variance, offset); |
|
if (copter.g.fs_ekf_thresh > 0 && mag_variance.length() >= copter.g.fs_ekf_thresh) { |
|
check_failed(display_failure, "EKF compass variance"); |
|
return false; |
|
} |
|
|
|
// check home and EKF origin are not too far |
|
if (copter.far_from_EKF_origin(ahrs.get_home())) { |
|
check_failed(display_failure, "EKF-home variance"); |
|
return false; |
|
} |
|
|
|
// if we got here all must be ok |
|
return true; |
|
} |
|
|
|
|
|
// arm_checks - perform final checks before arming |
|
// always called just before arming. Return true if ok to arm |
|
// has side-effect that logging is started |
|
bool AP_Arming_Copter::arm_checks(AP_Arming::Method method) |
|
{ |
|
const AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); |
|
|
|
// always check if inertial nav has started and is ready |
|
if (!ahrs.healthy()) { |
|
check_failed(true, "AHRS not healthy"); |
|
return false; |
|
} |
|
|
|
#ifndef ALLOW_ARM_NO_COMPASS |
|
// if external source of heading is available, we can skip compass health check |
|
if (!ahrs.is_ext_nav_used_for_yaw()) { |
|
const Compass &_compass = AP::compass(); |
|
// check compass health |
|
if (!_compass.healthy()) { |
|
check_failed(true, "Compass not healthy"); |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
Mode::Number control_mode = copter.control_mode; |
|
|
|
// always check if the current mode allows arming |
|
if (!copter.flightmode->allows_arming(method == AP_Arming::Method::MAVLINK)) { |
|
check_failed(true, "Mode not armable"); |
|
return false; |
|
} |
|
|
|
// always check motors |
|
if (!motor_checks(true)) { |
|
return false; |
|
} |
|
|
|
// if we are using motor interlock switch and it's enabled, fail to arm |
|
// skip check in Throw mode which takes control of the motor interlock |
|
if (copter.ap.using_interlock && copter.ap.motor_interlock_switch) { |
|
check_failed(true, "Motor Interlock Enabled"); |
|
return false; |
|
} |
|
|
|
// if we are not using Emergency Stop switch option, force Estop false to ensure motors |
|
// can run normally |
|
if (!rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)){ |
|
SRV_Channels::set_emergency_stop(false); |
|
// if we are using motor Estop switch, it must not be in Estop position |
|
} else if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP) && SRV_Channels::get_emergency_stop()){ |
|
gcs().send_text(MAV_SEVERITY_CRITICAL,"Arm: Motor Emergency Stopped"); |
|
return false; |
|
} |
|
|
|
// succeed if arming checks are disabled |
|
if (checks_to_perform == 0) { |
|
return true; |
|
} |
|
|
|
// check lean angle |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_INS)) { |
|
if (degrees(acosf(ahrs.cos_roll()*ahrs.cos_pitch()))*100.0f > copter.aparm.angle_max) { |
|
check_failed(ARMING_CHECK_INS, true, "Leaning"); |
|
return false; |
|
} |
|
} |
|
|
|
// check adsb |
|
#if ADSB_ENABLED == ENABLE |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_PARAMETERS)) { |
|
if (copter.failsafe.adsb) { |
|
check_failed(ARMING_CHECK_PARAMETERS, true, "ADSB threat detected"); |
|
return false; |
|
} |
|
} |
|
#endif |
|
|
|
// check throttle |
|
if ((checks_to_perform == ARMING_CHECK_ALL) || (checks_to_perform & ARMING_CHECK_RC)) { |
|
#if FRAME_CONFIG == HELI_FRAME |
|
const char *rc_item = "Collective"; |
|
#else |
|
const char *rc_item = "Throttle"; |
|
#endif |
|
// check throttle is not too low - must be above failsafe throttle |
|
if (copter.g.failsafe_throttle != FS_THR_DISABLED && copter.channel_throttle->get_radio_in() < copter.g.failsafe_throttle_value) { |
|
check_failed(ARMING_CHECK_RC, true, "%s below failsafe", rc_item); |
|
return false; |
|
} |
|
|
|
// check throttle is not too high - skips checks if arming from GCS in Guided |
|
if (!(method == AP_Arming::Method::MAVLINK && (control_mode == Mode::Number::GUIDED || control_mode == Mode::Number::GUIDED_NOGPS))) { |
|
// above top of deadband is too always high |
|
if (copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in()) > 0.0f) { |
|
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item); |
|
return false; |
|
} |
|
// in manual modes throttle must be at zero |
|
#if FRAME_CONFIG != HELI_FRAME |
|
if ((copter.flightmode->has_manual_throttle() || control_mode == Mode::Number::DRIFT) && copter.channel_throttle->get_control_in() > 0) { |
|
check_failed(ARMING_CHECK_RC, true, "%s too high", rc_item); |
|
return false; |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
// check if safety switch has been pushed |
|
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { |
|
check_failed(true, "Safety Switch"); |
|
return false; |
|
} |
|
|
|
// superclass method should always be the last thing called; it |
|
// has side-effects which would need to be cleaned up if one of |
|
// our arm checks failed |
|
return AP_Arming::arm_checks(method); |
|
} |
|
|
|
// mandatory checks that will be run if ARMING_CHECK is zero or arming forced |
|
bool AP_Arming_Copter::mandatory_checks(bool display_failure) |
|
{ |
|
// call mandatory gps checks and update notify status because regular gps checks will not run |
|
const bool result = mandatory_gps_checks(display_failure); |
|
AP_Notify::flags.pre_arm_gps_check = result; |
|
return result; |
|
} |
|
|
|
void AP_Arming_Copter::set_pre_arm_check(bool b) |
|
{ |
|
copter.ap.pre_arm_check = b; |
|
AP_Notify::flags.pre_arm_check = b; |
|
} |
|
|
|
bool AP_Arming_Copter::arm(const AP_Arming::Method method, const bool do_arming_checks) |
|
{ |
|
static bool in_arm_motors = false; |
|
|
|
// exit immediately if already in this function |
|
if (in_arm_motors) { |
|
return false; |
|
} |
|
in_arm_motors = true; |
|
|
|
// return true if already armed |
|
if (copter.motors->armed()) { |
|
in_arm_motors = false; |
|
return true; |
|
} |
|
|
|
if (!AP_Arming::arm(method, do_arming_checks)) { |
|
AP_Notify::events.arming_failed = true; |
|
in_arm_motors = false; |
|
return false; |
|
} |
|
|
|
// let logger know that we're armed (it may open logs e.g.) |
|
AP::logger().set_vehicle_armed(true); |
|
|
|
// disable cpu failsafe because initialising everything takes a while |
|
copter.failsafe_disable(); |
|
|
|
// notify that arming will occur (we do this early to give plenty of warning) |
|
AP_Notify::flags.armed = true; |
|
// call notify update a few times to ensure the message gets out |
|
for (uint8_t i=0; i<=10; i++) { |
|
AP::notify().update(); |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); |
|
#endif |
|
|
|
// Remember Orientation |
|
// -------------------- |
|
copter.init_simple_bearing(); |
|
|
|
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); |
|
|
|
copter.initial_armed_bearing = ahrs.yaw_sensor; |
|
|
|
if (!ahrs.home_is_set()) { |
|
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) |
|
ahrs.resetHeightDatum(); |
|
AP::logger().Write_Event(DATA_EKF_ALT_RESET); |
|
|
|
// we have reset height, so arming height is zero |
|
copter.arming_altitude_m = 0; |
|
} else if (!ahrs.home_is_locked()) { |
|
// Reset home position if it has already been set before (but not locked) |
|
if (!copter.set_home_to_current_location(false)) { |
|
// ignore failure |
|
} |
|
|
|
// remember the height when we armed |
|
copter.arming_altitude_m = copter.inertial_nav.get_altitude() * 0.01; |
|
} |
|
copter.update_super_simple_bearing(false); |
|
|
|
// Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point |
|
#if MODE_SMARTRTL_ENABLED == ENABLED |
|
copter.g2.smart_rtl.set_home(copter.position_ok()); |
|
#endif |
|
|
|
// enable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(true); |
|
hal.util->set_soft_armed(true); |
|
|
|
#if SPRAYER_ENABLED == ENABLED |
|
// turn off sprayer's test if on |
|
copter.sprayer.test_pump(false); |
|
#endif |
|
|
|
// enable output to motors |
|
copter.enable_motor_output(); |
|
|
|
// finally actually arm the motors |
|
copter.motors->armed(true); |
|
|
|
AP::logger().Write_Event(DATA_ARMED); |
|
|
|
// log flight mode in case it was changed while vehicle was disarmed |
|
AP::logger().Write_Mode((uint8_t)copter.control_mode, copter.control_mode_reason); |
|
|
|
// re-enable failsafe |
|
copter.failsafe_enable(); |
|
|
|
// perf monitor ignores delay due to arming |
|
AP::scheduler().perf_info.ignore_this_loop(); |
|
|
|
// flag exiting this function |
|
in_arm_motors = false; |
|
|
|
// Log time stamp of arming event |
|
copter.arm_time_ms = millis(); |
|
|
|
// Start the arming delay |
|
copter.ap.in_arming_delay = true; |
|
|
|
// assumed armed without a arming, switch. Overridden in switches.cpp |
|
copter.ap.armed_with_switch = false; |
|
|
|
// return success |
|
return true; |
|
} |
|
|
|
// arming.disarm - disarm motors |
|
bool AP_Arming_Copter::disarm() |
|
{ |
|
// return immediately if we are already disarmed |
|
if (!copter.motors->armed()) { |
|
return true; |
|
} |
|
|
|
if (!AP_Arming::disarm()) { |
|
return false; |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); |
|
#endif |
|
|
|
AP_AHRS_NavEKF &ahrs = AP::ahrs_navekf(); |
|
|
|
// save compass offsets learned by the EKF if enabled |
|
Compass &compass = AP::compass(); |
|
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) { |
|
for(uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) { |
|
Vector3f magOffsets; |
|
if (ahrs.getMagOffsets(i, magOffsets)) { |
|
compass.set_and_save_offsets(i, magOffsets); |
|
} |
|
} |
|
} |
|
|
|
#if AUTOTUNE_ENABLED == ENABLED |
|
// save auto tuned parameters |
|
if (copter.flightmode == &copter.mode_autotune) { |
|
copter.mode_autotune.save_tuning_gains(); |
|
} else { |
|
copter.mode_autotune.reset(); |
|
} |
|
#endif |
|
|
|
// we are not in the air |
|
copter.set_land_complete(true); |
|
copter.set_land_complete_maybe(true); |
|
|
|
AP::logger().Write_Event(DATA_DISARMED); |
|
|
|
// send disarm command to motors |
|
copter.motors->armed(false); |
|
|
|
#if MODE_AUTO_ENABLED == ENABLED |
|
// reset the mission |
|
copter.mode_auto.mission.reset(); |
|
#endif |
|
|
|
AP::logger().set_vehicle_armed(false); |
|
|
|
// disable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(false); |
|
hal.util->set_soft_armed(false); |
|
|
|
copter.ap.in_arming_delay = false; |
|
|
|
return true; |
|
}
|
|
|