|
|
/* |
|
|
AP_ADC_ADS7844.cpp - ADC ADS7844 Library for Ardupilot Mega |
|
|
Code by Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com |
|
|
|
|
|
Modified by John Ihlein 6 / 19 / 2010 to: |
|
|
1)Prevent overflow of adc_counter when more than 8 samples collected between reads. Probably |
|
|
only an issue on initial read of ADC at program start. |
|
|
2)Reorder analog read order as follows: |
|
|
p, q, r, ax, ay, az |
|
|
|
|
|
This library is free software; you can redistribute it and / or |
|
|
modify it under the terms of the GNU Lesser General Public |
|
|
License as published by the Free Software Foundation; either |
|
|
version 2.1 of the License, or (at your option) any later version. |
|
|
|
|
|
External ADC ADS7844 is connected via Serial port 2 (in SPI mode) |
|
|
TXD2 = MOSI = pin PH1 |
|
|
RXD2 = MISO = pin PH0 |
|
|
XCK2 = SCK = pin PH2 |
|
|
Chip Select pin is PC4 (33) [PH6 (9)] |
|
|
We are using the 16 clocks per conversion timming to increase efficiency (fast) |
|
|
|
|
|
The sampling frequency is 1kHz (Timer2 overflow interrupt) |
|
|
|
|
|
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so |
|
|
we have an 10x oversampling and averaging. |
|
|
|
|
|
Methods: |
|
|
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt) |
|
|
Ch(ch_num) : Return the ADC channel value |
|
|
|
|
|
// HJI - Input definitions. USB connector assumed to be on the left, Rx and servo |
|
|
// connector pins to the rear. IMU shield components facing up. These are board |
|
|
// referenced sensor inputs, not device referenced. |
|
|
On Ardupilot Mega Hardware, oriented as described above: |
|
|
Chennel 0 : yaw rate, r |
|
|
Channel 1 : roll rate, p |
|
|
Channel 2 : pitch rate, q |
|
|
Channel 3 : x / y gyro temperature |
|
|
Channel 4 : x acceleration, aX |
|
|
Channel 5 : y acceleration, aY |
|
|
Channel 6 : z acceleration, aZ |
|
|
Channel 7 : Differential pressure sensor port |
|
|
|
|
|
*/ |
|
|
extern "C" { |
|
|
// AVR LibC Includes |
|
|
#include <inttypes.h> |
|
|
#include <stdint.h> |
|
|
#include <avr/interrupt.h> |
|
|
#include "WConstants.h" |
|
|
} |
|
|
|
|
|
#include "AP_ADC_ADS7844.h" |
|
|
|
|
|
// Commands for reading ADC channels on ADS7844 |
|
|
static const unsigned char adc_cmd[9] = { 0x87, 0xC7, 0x97, 0xD7, 0xA7, 0xE7, 0xB7, 0xF7, 0x00 }; |
|
|
|
|
|
// the sum of the values since last read |
|
|
static volatile uint32_t _sum[8]; |
|
|
|
|
|
// how many values we've accumulated since last read |
|
|
static volatile uint16_t _count[8]; |
|
|
|
|
|
static uint32_t last_ch6_micros; |
|
|
|
|
|
// TCNT2 values for various interrupt rates, |
|
|
// assuming 256 prescaler. Note that these values |
|
|
// assume a zero-time ISR. The actual rate will be a |
|
|
// bit lower than this |
|
|
#define TCNT2_781_HZ (256-80) |
|
|
#define TCNT2_1008_HZ (256-62) |
|
|
#define TCNT2_1302_HZ (256-48) |
|
|
|
|
|
static inline unsigned char ADC_SPI_transfer(unsigned char data) |
|
|
{ |
|
|
/* Put data into buffer, sends the data */ |
|
|
UDR2 = data; |
|
|
/* Wait for data to be received */ |
|
|
while ( !(UCSR2A & (1 << RXC2)) ); |
|
|
/* Get and return received data from buffer */ |
|
|
return UDR2; |
|
|
} |
|
|
|
|
|
|
|
|
void AP_ADC_ADS7844::read(void) |
|
|
{ |
|
|
uint8_t ch; |
|
|
|
|
|
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4) |
|
|
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel |
|
|
|
|
|
for (ch = 0; ch < 8; ch++) { |
|
|
uint16_t v; |
|
|
|
|
|
v = ADC_SPI_transfer(0) << 8; // Read first byte |
|
|
v |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command |
|
|
|
|
|
if (v & 0x8007) { |
|
|
// this is a 12-bit ADC, shifted by 3 bits. |
|
|
// if we get other bits set then the value is |
|
|
// bogus and should be ignored |
|
|
continue; |
|
|
} |
|
|
|
|
|
if (++_count[ch] == 0) { |
|
|
// overflow ... shouldn't happen too often |
|
|
// unless we're just not using the |
|
|
// channel. Notice that we overflow the count |
|
|
// to 1 here, not zero, as otherwise the |
|
|
// reader below could get a division by zero |
|
|
_sum[ch] = 0; |
|
|
_count[ch] = 1; |
|
|
last_ch6_micros = micros(); |
|
|
} |
|
|
_sum[ch] += (v >> 3); |
|
|
} |
|
|
|
|
|
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4) |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
// Constructors //////////////////////////////////////////////////////////////// |
|
|
AP_ADC_ADS7844::AP_ADC_ADS7844() : |
|
|
_filter_index_accel(0), |
|
|
filter_result(false) |
|
|
{ |
|
|
} |
|
|
|
|
|
// Public Methods ////////////////////////////////////////////////////////////// |
|
|
void AP_ADC_ADS7844::Init( AP_PeriodicProcess * scheduler ) |
|
|
{ |
|
|
pinMode(ADC_CHIP_SELECT, OUTPUT); |
|
|
|
|
|
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low) |
|
|
|
|
|
// Setup Serial Port2 in SPI mode |
|
|
UBRR2 = 0; |
|
|
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode |
|
|
// Set MSPI mode of operation and SPI data mode 0. |
|
|
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2); |
|
|
// Enable receiver and transmitter. |
|
|
UCSR2B = (1 << RXEN2) | (1 << TXEN2); |
|
|
// Set Baud rate |
|
|
UBRR2 = 2; // SPI clock running at 2.6MHz |
|
|
|
|
|
// get an initial value for each channel. This ensures |
|
|
// _count[] is never zero |
|
|
for (uint8_t i=0; i<8; i++) { |
|
|
uint16_t adc_tmp; |
|
|
adc_tmp = ADC_SPI_transfer(0) << 8; |
|
|
adc_tmp |= ADC_SPI_transfer(adc_cmd[i + 1]); |
|
|
_count[i] = 1; |
|
|
_sum[i] = adc_tmp; |
|
|
} |
|
|
|
|
|
last_ch6_micros = micros(); |
|
|
|
|
|
scheduler->register_process( AP_ADC_ADS7844::read ); |
|
|
|
|
|
} |
|
|
|
|
|
// Read one channel value |
|
|
uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num) |
|
|
{ |
|
|
uint16_t count; |
|
|
uint32_t sum; |
|
|
|
|
|
// ensure we have at least one value |
|
|
while (_count[ch_num] == 0) /* noop */ ; |
|
|
|
|
|
// grab the value with interrupts disabled, and clear the count |
|
|
cli(); |
|
|
count = _count[ch_num]; |
|
|
sum = _sum[ch_num]; |
|
|
_count[ch_num] = 0; |
|
|
_sum[ch_num] = 0; |
|
|
sei(); |
|
|
|
|
|
return sum/count; |
|
|
} |
|
|
|
|
|
// Read 6 channel values |
|
|
// this assumes that the counts for all of the 6 channels are |
|
|
// equal. This will only be true if we always consistently access a |
|
|
// sensor by either Ch6() or Ch() and never mix them. If you mix them |
|
|
// then you will get very strange results |
|
|
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result) |
|
|
{ |
|
|
uint16_t count[6]; |
|
|
uint32_t sum[6]; |
|
|
uint8_t i; |
|
|
|
|
|
// ensure we have at least one value |
|
|
for (i=0; i<6; i++) { |
|
|
while (_count[channel_numbers[i]] == 0) /* noop */; |
|
|
} |
|
|
|
|
|
// grab the values with interrupts disabled, and clear the counts |
|
|
cli(); |
|
|
for (i=0; i<6; i++) { |
|
|
count[i] = _count[channel_numbers[i]]; |
|
|
sum[i] = _sum[channel_numbers[i]]; |
|
|
_count[channel_numbers[i]] = 0; |
|
|
_sum[channel_numbers[i]] = 0; |
|
|
} |
|
|
sei(); |
|
|
|
|
|
// calculate averages. We keep this out of the cli region |
|
|
// to prevent us stalling the ISR while doing the |
|
|
// division. That costs us 36 bytes of stack, but I think its |
|
|
// worth it. |
|
|
for (i = 0; i < 6; i++) { |
|
|
result[i] = (sum[i] + (count[i]/2)) / count[i]; |
|
|
} |
|
|
|
|
|
|
|
|
if(filter_result){ |
|
|
uint32_t _sum_accel; |
|
|
|
|
|
// simple Gyro Filter |
|
|
for (i = 0; i < 3; i++) { |
|
|
// add prev filtered value to new raw value, divide by 2 |
|
|
result[i] = (_prev_gyro[i] + result[i]) >> 1; |
|
|
|
|
|
// remember the filtered value |
|
|
_prev_gyro[i] = result[i]; |
|
|
} |
|
|
|
|
|
// Accel filter |
|
|
for (i = 0; i < 3; i++) { |
|
|
// move most recent result into filter |
|
|
_filter_accel[i][_filter_index_accel] = result[i+3]; |
|
|
|
|
|
// clear the sum |
|
|
_sum_accel = 0; |
|
|
|
|
|
// sum the filter |
|
|
for (uint8_t n = 0; n < ADC_ACCEL_FILTER_SIZE; n++) { |
|
|
_sum_accel += _filter_accel[i][n]; |
|
|
} |
|
|
|
|
|
// filter does a moving average on last 8 reads, sums half with half of last filtered value |
|
|
// save old result |
|
|
_prev_accel[i] = result[i+3] = (_sum_accel >> 4) + (_prev_accel[i] >> 1); // divide by 16, divide by 2 |
|
|
|
|
|
} |
|
|
|
|
|
// increment filter index |
|
|
_filter_index_accel++; |
|
|
|
|
|
// loop our filter |
|
|
if(_filter_index_accel == ADC_ACCEL_FILTER_SIZE) |
|
|
_filter_index_accel = 0; |
|
|
} |
|
|
|
|
|
|
|
|
// return number of microseconds since last call |
|
|
uint32_t us = micros(); |
|
|
uint32_t ret = us - last_ch6_micros; |
|
|
last_ch6_micros = us; |
|
|
return ret; |
|
|
}
|
|
|
|