You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
459 lines
17 KiB
459 lines
17 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsMatrix.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_MotorsMatrix.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// Init |
|
void AP_MotorsMatrix::Init() |
|
{ |
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
uint8_t i; |
|
|
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// check each enabled motor |
|
uint32_t mask = 0; |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
mask |= 1U << i; |
|
} |
|
} |
|
hal.rcout->set_freq( mask, _speed_hz ); |
|
} |
|
|
|
// set frame orientation (normally + or X) |
|
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) |
|
{ |
|
// return if nothing has changed |
|
if( new_orientation == _flags.frame_orientation ) { |
|
return; |
|
} |
|
|
|
// call parent |
|
AP_Motors::set_frame_orientation( new_orientation ); |
|
|
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsMatrix::enable() |
|
{ |
|
int8_t i; |
|
|
|
// enable output channels |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->enable_ch(i); |
|
} |
|
} |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsMatrix::output_min() |
|
{ |
|
int8_t i; |
|
|
|
// set limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = true; |
|
limit.throttle_upper = false; |
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor |
|
hal.rcout->cork(); |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->write(i, _throttle_radio_min); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsMatrix::get_motor_mask() |
|
{ |
|
uint16_t mask = 0; |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
mask |= 1U << i; |
|
} |
|
} |
|
return mask; |
|
} |
|
|
|
void AP_MotorsMatrix::output_armed_not_stabilizing() |
|
{ |
|
uint8_t i; |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors |
|
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors |
|
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped); |
|
if (_throttle_control_input <= thr_in_min) { |
|
_throttle_control_input = thr_in_min; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
if (_throttle_control_input >= _hover_out) { |
|
_throttle_control_input = _hover_out; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
throttle_radio_output = calc_throttle_radio_output(); |
|
|
|
// set output throttle |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = throttle_radio_output; |
|
} |
|
} |
|
|
|
if(throttle_radio_output >= out_min_pwm) { |
|
// apply thrust curve and voltage scaling |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = apply_thrust_curve_and_volt_scaling(motor_out[i], out_min_pwm, out_max_pwm); |
|
} |
|
} |
|
} |
|
|
|
// send output to each motor |
|
hal.rcout->cork(); |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->write(i, motor_out[i]); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
// includes new scaling stability patch |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
void AP_MotorsMatrix::output_armed_stabilizing() |
|
{ |
|
int8_t i; |
|
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 |
|
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 |
|
int16_t yaw_pwm; // yaw pwm value, initially calculated by calc_yaw_pwm() but may be modified after, +/- 400 |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t out_min_pwm = _throttle_radio_min + _min_throttle; // minimum pwm value we can send to the motors |
|
int16_t out_max_pwm = _throttle_radio_max; // maximum pwm value we can send to the motors |
|
int16_t out_mid_pwm = (out_min_pwm+out_max_pwm)/2; // mid pwm value we can send to the motors |
|
int16_t out_best_thr_pwm; // the is the best throttle we can come up which provides good control without climbing |
|
float rpy_scale = 1.0; // this is used to scale the roll, pitch and yaw to fit within the motor limits |
|
|
|
int16_t rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. |
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final outputs sent to the motors |
|
|
|
int16_t rpy_low = 0; // lowest motor value |
|
int16_t rpy_high = 0; // highest motor value |
|
int16_t yaw_allowed; // amount of yaw we can fit in |
|
int16_t thr_adj; // the difference between the pilot's desired throttle and out_best_thr_pwm (the throttle that is actually provided) |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// Ensure throttle is within bounds of 0 to 1000 |
|
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle); |
|
if (_throttle_control_input <= thr_in_min) { |
|
_throttle_control_input = thr_in_min; |
|
limit.throttle_lower = true; |
|
} |
|
if (_throttle_control_input >= _max_throttle) { |
|
_throttle_control_input = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
roll_pwm = calc_roll_pwm(); |
|
pitch_pwm = calc_pitch_pwm(); |
|
yaw_pwm = calc_yaw_pwm(); |
|
throttle_radio_output = calc_throttle_radio_output(); |
|
|
|
// calculate roll and pitch for each motor |
|
// set rpy_low and rpy_high to the lowest and highest values of the motors |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = roll_pwm * _roll_factor[i] * get_compensation_gain() + |
|
pitch_pwm * _pitch_factor[i] * get_compensation_gain(); |
|
|
|
// record lowest roll pitch command |
|
if (rpy_out[i] < rpy_low) { |
|
rpy_low = rpy_out[i]; |
|
} |
|
// record highest roll pich command |
|
if (rpy_out[i] > rpy_high) { |
|
rpy_high = rpy_out[i]; |
|
} |
|
} |
|
} |
|
|
|
// calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of: |
|
// 1. mid throttle - average of highest and lowest motor (this would give the maximum possible room margin above the highest motor and below the lowest) |
|
// 2. the higher of: |
|
// a) the pilot's throttle input |
|
// b) the mid point between the pilot's input throttle and hover-throttle |
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. |
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. |
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favour reducing throttle *because* it provides better yaw control) |
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favour reducing throttle instead of better yaw control because the pilot has commanded it |
|
int16_t motor_mid = (rpy_low+rpy_high)/2; |
|
out_best_thr_pwm = min(out_mid_pwm - motor_mid, max(throttle_radio_output, throttle_radio_output*max(0,1.0f-_throttle_thr_mix)+get_hover_throttle_as_pwm()*_throttle_thr_mix)); |
|
|
|
// calculate amount of yaw we can fit into the throttle range |
|
// this is always equal to or less than the requested yaw from the pilot or rate controller |
|
yaw_allowed = min(out_max_pwm - out_best_thr_pwm, out_best_thr_pwm - out_min_pwm) - (rpy_high-rpy_low)/2; |
|
yaw_allowed = max(yaw_allowed, _yaw_headroom); |
|
|
|
if (yaw_pwm >= 0) { |
|
// if yawing right |
|
if (yaw_allowed > yaw_pwm * get_compensation_gain()) { |
|
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output |
|
}else{ |
|
limit.yaw = true; |
|
} |
|
}else{ |
|
// if yawing left |
|
yaw_allowed = -yaw_allowed; |
|
if (yaw_allowed < yaw_pwm * get_compensation_gain()) { |
|
yaw_allowed = yaw_pwm * get_compensation_gain(); // to-do: this is bad form for yaw_allows to change meaning to become the amount that we are going to output |
|
}else{ |
|
limit.yaw = true; |
|
} |
|
} |
|
|
|
// add yaw to intermediate numbers for each motor |
|
rpy_low = 0; |
|
rpy_high = 0; |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = rpy_out[i] + |
|
yaw_allowed * _yaw_factor[i]; |
|
|
|
// record lowest roll+pitch+yaw command |
|
if( rpy_out[i] < rpy_low ) { |
|
rpy_low = rpy_out[i]; |
|
} |
|
// record highest roll+pitch+yaw command |
|
if( rpy_out[i] > rpy_high) { |
|
rpy_high = rpy_out[i]; |
|
} |
|
} |
|
} |
|
|
|
// check everything fits |
|
thr_adj = throttle_radio_output - out_best_thr_pwm; |
|
|
|
// calculate upper and lower limits of thr_adj |
|
int16_t thr_adj_max = max(out_max_pwm-(out_best_thr_pwm+rpy_high),0); |
|
|
|
// if we are increasing the throttle (situation #2 above).. |
|
if (thr_adj > 0) { |
|
// increase throttle as close as possible to requested throttle |
|
// without going over out_max_pwm |
|
if (thr_adj > thr_adj_max){ |
|
thr_adj = thr_adj_max; |
|
// we haven't even been able to apply full throttle command |
|
limit.throttle_upper = true; |
|
} |
|
}else if(thr_adj < 0){ |
|
// decrease throttle as close as possible to requested throttle |
|
// without going under out_min_pwm or over out_max_pwm |
|
// earlier code ensures we can't break both boundaries |
|
int16_t thr_adj_min = min(out_min_pwm-(out_best_thr_pwm+rpy_low),0); |
|
if (thr_adj > thr_adj_max) { |
|
thr_adj = thr_adj_max; |
|
limit.throttle_upper = true; |
|
} |
|
if (thr_adj < thr_adj_min) { |
|
thr_adj = thr_adj_min; |
|
} |
|
} |
|
|
|
// do we need to reduce roll, pitch, yaw command |
|
// earlier code does not allow both limit's to be passed simultaneously with abs(_yaw_factor)<1 |
|
if ((rpy_low+out_best_thr_pwm)+thr_adj < out_min_pwm){ |
|
// protect against divide by zero |
|
if (rpy_low != 0) { |
|
rpy_scale = (float)(out_min_pwm-thr_adj-out_best_thr_pwm)/rpy_low; |
|
} |
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
}else if((rpy_high+out_best_thr_pwm)+thr_adj > out_max_pwm){ |
|
// protect against divide by zero |
|
if (rpy_high != 0) { |
|
rpy_scale = (float)(out_max_pwm-thr_adj-out_best_thr_pwm)/rpy_high; |
|
} |
|
// we haven't even been able to apply full roll, pitch and minimal yaw without scaling |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
} |
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = out_best_thr_pwm+thr_adj + |
|
rpy_scale*rpy_out[i]; |
|
} |
|
} |
|
|
|
// apply thrust curve and voltage scaling |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = apply_thrust_curve_and_volt_scaling(motor_out[i], out_min_pwm, out_max_pwm); |
|
} |
|
} |
|
|
|
// clip motor output if required (shouldn't be) |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = constrain_int16(motor_out[i], out_min_pwm, out_max_pwm); |
|
} |
|
} |
|
|
|
// send output to each motor |
|
hal.rcout->cork(); |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
hal.rcout->write(i, motor_out[i]); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsMatrix::output_disarmed() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// loop through all the possible orders spinning any motors that match that description |
|
hal.rcout->cork(); |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i] && _test_order[i] == motor_seq) { |
|
// turn on this motor |
|
hal.rcout->write(i, pwm); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
// add_motor |
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
|
|
// increment number of motors if this motor is being newly motor_enabled |
|
if( !motor_enabled[motor_num] ) { |
|
motor_enabled[motor_num] = true; |
|
} |
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch) |
|
_roll_factor[motor_num] = roll_fac; |
|
_pitch_factor[motor_num] = pitch_fac; |
|
_yaw_factor[motor_num] = yaw_fac; |
|
|
|
// set order that motor appears in test |
|
_test_order[motor_num] = testing_order; |
|
|
|
// disable this channel from being used by RC_Channel_aux |
|
RC_Channel_aux::disable_aux_channel(motor_num); |
|
} |
|
} |
|
|
|
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order); |
|
} |
|
|
|
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames) |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor_raw( |
|
motor_num, |
|
cosf(radians(roll_factor_in_degrees + 90)), |
|
cosf(radians(pitch_factor_in_degrees)), |
|
yaw_factor, |
|
testing_order); |
|
} |
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor |
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
// disable the motor, set all factors to zero |
|
motor_enabled[motor_num] = false; |
|
_roll_factor[motor_num] = 0; |
|
_pitch_factor[motor_num] = 0; |
|
_yaw_factor[motor_num] = 0; |
|
} |
|
} |
|
|
|
// remove_all_motors - removes all motor definitions |
|
void AP_MotorsMatrix::remove_all_motors() |
|
{ |
|
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
remove_motor(i); |
|
} |
|
}
|
|
|