You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1297 lines
70 KiB
1297 lines
70 KiB
/* |
|
24 state EKF based on the derivation in https://github.com/PX4/ecl/ |
|
blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m |
|
|
|
Converted from Matlab to C++ by Paul Riseborough |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
#pragma once |
|
|
|
#pragma GCC optimize("O3") |
|
|
|
#define EK3_DISABLE_INTERRUPTS 0 |
|
|
|
#include <AP_Common/Location.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include "AP_NavEKF3.h" |
|
#include <AP_Math/vectorN.h> |
|
#include <AP_NavEKF3/AP_NavEKF3_Buffer.h> |
|
#include <AP_InertialSensor/AP_InertialSensor.h> |
|
|
|
// GPS pre-flight check bit locations |
|
#define MASK_GPS_NSATS (1<<0) |
|
#define MASK_GPS_HDOP (1<<1) |
|
#define MASK_GPS_SPD_ERR (1<<2) |
|
#define MASK_GPS_POS_ERR (1<<3) |
|
#define MASK_GPS_YAW_ERR (1<<4) |
|
#define MASK_GPS_POS_DRIFT (1<<5) |
|
#define MASK_GPS_VERT_SPD (1<<6) |
|
#define MASK_GPS_HORIZ_SPD (1<<7) |
|
|
|
// active height source |
|
#define HGT_SOURCE_BARO 0 |
|
#define HGT_SOURCE_RNG 1 |
|
#define HGT_SOURCE_GPS 2 |
|
#define HGT_SOURCE_BCN 3 |
|
|
|
#define earthRate 0.000072921f // earth rotation rate (rad/sec) |
|
|
|
// maximum allowed gyro bias (rad/sec) |
|
#define GYRO_BIAS_LIMIT 0.5f |
|
|
|
// initial accel bias uncertainty as a fraction of the state limit |
|
#define ACCEL_BIAS_LIM_SCALER 0.2f |
|
|
|
// target update time for the EKF in msec and sec |
|
#define EKF_TARGET_DT_MS 12 |
|
#define EKF_TARGET_DT 0.012f |
|
|
|
// mag fusion final reset altitude (using NED frame so altitude is negative) |
|
#define EKF3_MAG_FINAL_RESET_ALT 2.5f |
|
|
|
class AP_AHRS; |
|
|
|
class NavEKF3_core |
|
{ |
|
public: |
|
// Constructor |
|
NavEKF3_core(void); |
|
|
|
// setup this core backend |
|
bool setup_core(NavEKF3 *_frontend, uint8_t _imu_index, uint8_t _core_index); |
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present) |
|
// This method can only be used when the vehicle is static |
|
bool InitialiseFilterBootstrap(void); |
|
|
|
// Update Filter States - this should be called whenever new IMU data is available |
|
// The predict flag is set true when a new prediction cycle can be started |
|
void UpdateFilter(bool predict); |
|
|
|
// Check basic filter health metrics and return a consolidated health status |
|
bool healthy(void) const; |
|
|
|
// Return a consolidated error score where higher numbers are less healthy |
|
// Intended to be used by the front-end to determine which is the primary EKF |
|
float errorScore(void) const; |
|
|
|
// Write the last calculated NE position relative to the reference point (m). |
|
// If a calculated solution is not available, use the best available data and return false |
|
// If false returned, do not use for flight control |
|
bool getPosNE(Vector2f &posNE) const; |
|
|
|
// Write the last calculated D position relative to the reference point (m). |
|
// If a calculated solution is not available, use the best available data and return false |
|
// If false returned, do not use for flight control |
|
bool getPosD(float &posD) const; |
|
|
|
// return NED velocity in m/s |
|
void getVelNED(Vector3f &vel) const; |
|
|
|
// Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s |
|
// This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF |
|
// but will always be kinematically consistent with the z component of the EKF position state |
|
float getPosDownDerivative(void) const; |
|
|
|
// This returns the specific forces in the NED frame |
|
void getAccelNED(Vector3f &accelNED) const; |
|
|
|
// return body axis gyro bias estimates in rad/sec |
|
void getGyroBias(Vector3f &gyroBias) const; |
|
|
|
// return accelerometer bias in m/s/s |
|
void getAccelBias(Vector3f &accelBias) const; |
|
|
|
// return tilt error convergence metric |
|
void getTiltError(float &ang) const; |
|
|
|
// reset body axis gyro bias estimates |
|
void resetGyroBias(void); |
|
|
|
// Resets the baro so that it reads zero at the current height |
|
// Resets the EKF height to zero |
|
// Adjusts the EKF origin height so that the EKF height + origin height is the same as before |
|
// Returns true if the height datum reset has been performed |
|
// If using a range finder for height no reset is performed and it returns false |
|
bool resetHeightDatum(void); |
|
|
|
// Commands the EKF to not use GPS. |
|
// This command must be sent prior to vehicle arming and EKF commencement of GPS usage |
|
// Returns 0 if command rejected |
|
// Returns 1 if command accepted |
|
uint8_t setInhibitGPS(void); |
|
|
|
// return the horizontal speed limit in m/s set by optical flow sensor limits |
|
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow |
|
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const; |
|
|
|
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis) |
|
void getWind(Vector3f &wind) const; |
|
|
|
// return earth magnetic field estimates in measurement units / 1000 |
|
void getMagNED(Vector3f &magNED) const; |
|
|
|
// return body magnetic field estimates in measurement units / 1000 |
|
void getMagXYZ(Vector3f &magXYZ) const; |
|
|
|
// return the index for the active magnetometer |
|
uint8_t getActiveMag() const; |
|
|
|
// Return estimated magnetometer offsets |
|
// Return true if magnetometer offsets are valid |
|
bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const; |
|
|
|
// Return the last calculated latitude, longitude and height in WGS-84 |
|
// If a calculated location isn't available, return a raw GPS measurement |
|
// The status will return true if a calculation or raw measurement is available |
|
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control |
|
bool getLLH(struct Location &loc) const; |
|
|
|
// return the latitude and longitude and height used to set the NED origin |
|
// All NED positions calculated by the filter are relative to this location |
|
// Returns false if the origin has not been set |
|
bool getOriginLLH(struct Location &loc) const; |
|
|
|
// set the latitude and longitude and height used to set the NED origin |
|
// All NED positions calculated by the filter will be relative to this location |
|
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed) |
|
// Returns false if the filter has rejected the attempt to set the origin |
|
bool setOriginLLH(const Location &loc); |
|
|
|
// return estimated height above ground level |
|
// return false if ground height is not being estimated. |
|
bool getHAGL(float &HAGL) const; |
|
|
|
// return the Euler roll, pitch and yaw angle in radians |
|
void getEulerAngles(Vector3f &eulers) const; |
|
|
|
// return the transformation matrix from XYZ (body) to NED axes |
|
void getRotationBodyToNED(Matrix3f &mat) const; |
|
|
|
// return the quaternions defining the rotation from NED to XYZ (body) axes |
|
void getQuaternion(Quaternion &quat) const; |
|
|
|
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements |
|
void getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const; |
|
|
|
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements |
|
void getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const; |
|
|
|
// return the diagonals from the covariance matrix |
|
void getStateVariances(float stateVar[24]); |
|
|
|
// should we use the compass? This is public so it can be used for |
|
// reporting via ahrs.use_compass() |
|
bool use_compass(void) const; |
|
|
|
// write the raw optical flow measurements |
|
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality |
|
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes. |
|
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro |
|
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate |
|
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor. |
|
// posOffset is the XYZ flow sensor position in the body frame in m |
|
void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset); |
|
|
|
// return data for debugging optical flow fusion |
|
void getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const; |
|
|
|
/* |
|
* Write body frame linear and angular displacement measurements from a visual odometry sensor |
|
* |
|
* quality is a normalised confidence value from 0 to 100 |
|
* delPos is the XYZ change in linear position measured in body frame and relative to the inertial reference at time_ms (m) |
|
* delAng is the XYZ angular rotation measured in body frame and relative to the inertial reference at time_ms (rad) |
|
* delTime is the time interval for the measurement of delPos and delAng (sec) |
|
* timeStamp_ms is the timestamp of the last image used to calculate delPos and delAng (msec) |
|
* posOffset is the XYZ body frame position of the camera focal point (m) |
|
*/ |
|
void writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset); |
|
|
|
/* |
|
* Write odometry data from a wheel encoder. The axis of rotation is assumed to be parallel to the vehicle body axis |
|
* |
|
* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad) |
|
* delTime is the time interval for the measurement of delAng (sec) |
|
* timeStamp_ms is the time when the rotation was last measured (msec) |
|
* posOffset is the XYZ body frame position of the wheel hub (m) |
|
* radius is the effective rolling radius of the wheel (m) |
|
*/ |
|
void writeWheelOdom(float delAng, float delTime, uint32_t timeStamp_ms, const Vector3f &posOffset, float radius); |
|
|
|
/* |
|
* Return data for debugging body frame odometry fusion: |
|
* |
|
* velInnov are the XYZ body frame velocity innovations (m/s) |
|
* velInnovVar are the XYZ body frame velocity innovation variances (m/s)**2 |
|
* |
|
* Return the time stamp of the last odometry fusion update (msec) |
|
*/ |
|
uint32_t getBodyFrameOdomDebug(Vector3f &velInnov, Vector3f &velInnovVar); |
|
|
|
/* |
|
Returns the following data for debugging range beacon fusion |
|
ID : beacon identifier |
|
rng : measured range to beacon (m) |
|
innov : range innovation (m) |
|
innovVar : innovation variance (m^2) |
|
testRatio : innovation consistency test ratio |
|
beaconPosNED : beacon NED position (m) |
|
offsetHigh : high hypothesis for range beacons system vertical offset (m) |
|
offsetLow : low hypothesis for range beacons system vertical offset (m) |
|
posNED : North,East,Down position estimate of receiver from 3-state filter |
|
|
|
returns true if data could be found, false if it could not |
|
*/ |
|
bool getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, |
|
float &offsetHigh, float &offsetLow, Vector3f &posNED); |
|
|
|
/* |
|
* Writes the measurement from a yaw angle sensor |
|
* |
|
* yawAngle: Yaw angle of the vehicle relative to true north in radians where a positive angle is |
|
* produced by a RH rotation about the Z body axis. The Yaw rotation is the first rotation in a |
|
* 321 (ZYX) or a 312 (ZXY) rotation sequence as specified by the 'type' argument. |
|
* yawAngleErr is the 1SD accuracy of the yaw angle measurement in radians. |
|
* timeStamp_ms: System time in msec when the yaw measurement was taken. This time stamp must include |
|
* all measurement lag and transmission delays. |
|
* type: An integer specifying Euler rotation order used to define the yaw angle. |
|
* type = 1 specifies a 312 (ZXY) rotation order, type = 2 specifies a 321 (ZYX) rotation order. |
|
*/ |
|
void writeEulerYawAngle(float yawAngle, float yawAngleErr, uint32_t timeStamp_ms, uint8_t type); |
|
|
|
// called by vehicle code to specify that a takeoff is happening |
|
// causes the EKF to compensate for expected barometer errors due to ground effect |
|
void setTakeoffExpected(bool val); |
|
|
|
// called by vehicle code to specify that a touchdown is expected to happen |
|
// causes the EKF to compensate for expected barometer errors due to ground effect |
|
void setTouchdownExpected(bool val); |
|
|
|
// Set to true if the terrain underneath is stable enough to be used as a height reference |
|
// in combination with a range finder. Set to false if the terrain underneath the vehicle |
|
// cannot be used as a height reference |
|
void setTerrainHgtStable(bool val); |
|
|
|
/* |
|
return the filter fault status as a bitmasked integer |
|
0 = quaternions are NaN |
|
1 = velocities are NaN |
|
2 = badly conditioned X magnetometer fusion |
|
3 = badly conditioned Y magnetometer fusion |
|
5 = badly conditioned Z magnetometer fusion |
|
6 = badly conditioned airspeed fusion |
|
7 = badly conditioned synthetic sideslip fusion |
|
7 = filter is not initialised |
|
*/ |
|
void getFilterFaults(uint16_t &faults) const; |
|
|
|
/* |
|
return filter timeout status as a bitmasked integer |
|
0 = position measurement timeout |
|
1 = velocity measurement timeout |
|
2 = height measurement timeout |
|
3 = magnetometer measurement timeout |
|
5 = unassigned |
|
6 = unassigned |
|
7 = unassigned |
|
7 = unassigned |
|
*/ |
|
void getFilterTimeouts(uint8_t &timeouts) const; |
|
|
|
/* |
|
return filter gps quality check status |
|
*/ |
|
void getFilterGpsStatus(nav_gps_status &status) const; |
|
|
|
/* |
|
Return a filter function status that indicates: |
|
Which outputs are valid |
|
If the filter has detected takeoff |
|
If the filter has activated the mode that mitigates against ground effect static pressure errors |
|
If GPS data is being used |
|
*/ |
|
void getFilterStatus(nav_filter_status &status) const; |
|
|
|
// send an EKF_STATUS_REPORT message to GCS |
|
void send_status_report(mavlink_channel_t chan); |
|
|
|
// provides the height limit to be observed by the control loops |
|
// returns false if no height limiting is required |
|
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation |
|
bool getHeightControlLimit(float &height) const; |
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians |
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred |
|
uint32_t getLastYawResetAngle(float &yawAng) const; |
|
|
|
// return the amount of NE position change due to the last position reset in metres |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastPosNorthEastReset(Vector2f &pos) const; |
|
|
|
// return the amount of D position change due to the last position reset in metres |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastPosDownReset(float &posD) const; |
|
|
|
// return the amount of NE velocity change due to the last velocity reset in metres/sec |
|
// returns the time of the last reset or 0 if no reset has ever occurred |
|
uint32_t getLastVelNorthEastReset(Vector2f &vel) const; |
|
|
|
// report any reason for why the backend is refusing to initialise |
|
const char *prearm_failure_reason(void) const; |
|
|
|
// report the number of frames lapsed since the last state prediction |
|
// this is used by other instances to level load |
|
uint8_t getFramesSincePredict(void) const; |
|
|
|
// publish output observer angular, velocity and position tracking error |
|
void getOutputTrackingError(Vector3f &error) const; |
|
|
|
// get the IMU index. For now we return the gyro index, as that is most |
|
// critical for use by other subsystems. |
|
uint8_t getIMUIndex(void) const { return gyro_index_active; } |
|
|
|
// get timing statistics structure |
|
void getTimingStatistics(struct ekf_timing &timing); |
|
|
|
private: |
|
// Reference to the global EKF frontend for parameters |
|
NavEKF3 *frontend; |
|
uint8_t imu_index; // preferred IMU index |
|
uint8_t gyro_index_active; // active gyro index (in case preferred fails) |
|
uint8_t accel_index_active; // active accel index (in case preferred fails) |
|
uint8_t core_index; |
|
uint8_t imu_buffer_length; |
|
uint8_t obs_buffer_length; |
|
|
|
typedef float ftype; |
|
#if MATH_CHECK_INDEXES |
|
typedef VectorN<ftype,2> Vector2; |
|
typedef VectorN<ftype,3> Vector3; |
|
typedef VectorN<ftype,4> Vector4; |
|
typedef VectorN<ftype,5> Vector5; |
|
typedef VectorN<ftype,6> Vector6; |
|
typedef VectorN<ftype,7> Vector7; |
|
typedef VectorN<ftype,8> Vector8; |
|
typedef VectorN<ftype,9> Vector9; |
|
typedef VectorN<ftype,10> Vector10; |
|
typedef VectorN<ftype,11> Vector11; |
|
typedef VectorN<ftype,13> Vector13; |
|
typedef VectorN<ftype,14> Vector14; |
|
typedef VectorN<ftype,15> Vector15; |
|
typedef VectorN<ftype,21> Vector21; |
|
typedef VectorN<ftype,22> Vector22; |
|
typedef VectorN<ftype,23> Vector23; |
|
typedef VectorN<ftype,24> Vector24; |
|
typedef VectorN<ftype,25> Vector25; |
|
typedef VectorN<ftype,31> Vector31; |
|
typedef VectorN<ftype,28> Vector28; |
|
typedef VectorN<VectorN<ftype,3>,3> Matrix3; |
|
typedef VectorN<VectorN<ftype,24>,24> Matrix24; |
|
typedef VectorN<VectorN<ftype,34>,50> Matrix34_50; |
|
typedef VectorN<uint32_t,50> Vector_u32_50; |
|
#else |
|
typedef ftype Vector2[2]; |
|
typedef ftype Vector3[3]; |
|
typedef ftype Vector4[4]; |
|
typedef ftype Vector5[5]; |
|
typedef ftype Vector6[6]; |
|
typedef ftype Vector7[7]; |
|
typedef ftype Vector8[8]; |
|
typedef ftype Vector9[9]; |
|
typedef ftype Vector10[10]; |
|
typedef ftype Vector11[11]; |
|
typedef ftype Vector13[13]; |
|
typedef ftype Vector14[14]; |
|
typedef ftype Vector15[15]; |
|
typedef ftype Vector21[21]; |
|
typedef ftype Vector22[22]; |
|
typedef ftype Vector23[23]; |
|
typedef ftype Vector24[24]; |
|
typedef ftype Vector25[25]; |
|
typedef ftype Vector28[28]; |
|
typedef ftype Matrix3[3][3]; |
|
typedef ftype Matrix24[24][24]; |
|
typedef ftype Matrix34_50[34][50]; |
|
typedef uint32_t Vector_u32_50[50]; |
|
#endif |
|
|
|
const AP_AHRS *_ahrs; |
|
|
|
// the states are available in two forms, either as a Vector24, or |
|
// broken down as individual elements. Both are equivalent (same |
|
// memory) |
|
struct state_elements { |
|
Quaternion quat; // quaternion defining rotation from local NED earth frame to body frame |
|
Vector3f velocity; // velocity of IMU in local NED earth frame (m/sec) |
|
Vector3f position; // position of IMU in local NED earth frame (m) |
|
Vector3f gyro_bias; // body frame delta angle IMU bias vector (rad) |
|
Vector3f accel_bias; // body frame delta velocity IMU bias vector (m/sec) |
|
Vector3f earth_magfield; // earth frame magnetic field vector (Gauss) |
|
Vector3f body_magfield; // body frame magnetic field vector (Gauss) |
|
Vector2f wind_vel; // horizontal North East wind velocity vector in local NED earth frame (m/sec) |
|
}; |
|
|
|
union { |
|
Vector24 statesArray; |
|
struct state_elements stateStruct; |
|
}; |
|
|
|
struct output_elements { |
|
Quaternion quat; // quaternion defining rotation from local NED earth frame to body frame |
|
Vector3f velocity; // velocity of body frame origin in local NED earth frame (m/sec) |
|
Vector3f position; // position of body frame origin in local NED earth frame (m) |
|
}; |
|
|
|
struct imu_elements { |
|
Vector3f delAng; // IMU delta angle measurements in body frame (rad) |
|
Vector3f delVel; // IMU delta velocity measurements in body frame (m/sec) |
|
float delAngDT; // time interval over which delAng has been measured (sec) |
|
float delVelDT; // time interval over which delVelDT has been measured (sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
uint8_t gyro_index; |
|
uint8_t accel_index; |
|
}; |
|
|
|
struct gps_elements { |
|
Vector2f pos; // horizontal North East position of the GPS antenna in local NED earth frame (m) |
|
float hgt; // height of the GPS antenna in local NED earth frame (m) |
|
Vector3f vel; // velocity of the GPS antenna in local NED earth frame (m/sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
uint8_t sensor_idx; // unique integer identifying the GPS sensor |
|
}; |
|
|
|
struct mag_elements { |
|
Vector3f mag; // body frame magnetic field measurements (Gauss) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct baro_elements { |
|
float hgt; // height of the pressure sensor in local NED earth frame (m) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct range_elements { |
|
float rng; // distance measured by the range sensor (m) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
uint8_t sensor_idx; // integer either 0 or 1 uniquely identifying up to two range sensors |
|
}; |
|
|
|
struct rng_bcn_elements { |
|
float rng; // range measurement to each beacon (m) |
|
Vector3f beacon_posNED; // NED position of the beacon (m) |
|
float rngErr; // range measurement error 1-std (m) |
|
uint8_t beacon_ID; // beacon identification number |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct tas_elements { |
|
float tas; // true airspeed measurement (m/sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct of_elements { |
|
Vector2f flowRadXY; // raw (non motion compensated) optical flow angular rates about the XY body axes (rad/sec) |
|
Vector2f flowRadXYcomp; // motion compensated XY optical flow angular rates about the XY body axes (rad/sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
Vector3f bodyRadXYZ; // body frame XYZ axis angular rates averaged across the optical flow measurement interval (rad/sec) |
|
const Vector3f *body_offset;// pointer to XYZ position of the optical flow sensor in body frame (m) |
|
}; |
|
|
|
struct vel_odm_elements { |
|
Vector3f vel; // XYZ velocity measured in body frame (m/s) |
|
float velErr; // velocity measurement error 1-std (m/s) |
|
const Vector3f *body_offset;// pointer to XYZ position of the velocity sensor in body frame (m) |
|
Vector3f angRate; // angular rate estimated from odometry (rad/sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct wheel_odm_elements { |
|
float delAng; // wheel rotation angle measured in body frame - positive is forward movement of vehicle (rad/s) |
|
float radius; // wheel radius (m) |
|
const Vector3f *hub_offset; // pointer to XYZ position of the wheel hub in body frame (m) |
|
float delTime; // time interval that the measurement was accumulated over (sec) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
}; |
|
|
|
struct yaw_elements { |
|
float yawAng; // yaw angle measurement (rad) |
|
float yawAngErr; // yaw angle 1SD measurement accuracy (rad) |
|
uint32_t time_ms; // measurement timestamp (msec) |
|
uint8_t type; // type specifiying Euler rotation order used, 1 = 312 (ZXY), 2 = 321 (ZYX) |
|
}; |
|
|
|
// bias estimates for the IMUs that are enabled but not being used |
|
// by this core. |
|
struct { |
|
Vector3f gyro_bias; |
|
Vector3f accel_bias; |
|
} inactiveBias[INS_MAX_INSTANCES]; |
|
|
|
// update the navigation filter status |
|
void updateFilterStatus(void); |
|
|
|
// update the quaternion, velocity and position states using IMU measurements |
|
void UpdateStrapdownEquationsNED(); |
|
|
|
// calculate the predicted state covariance matrix |
|
void CovariancePrediction(); |
|
|
|
// force symmetry on the state covariance matrix |
|
void ForceSymmetry(); |
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix |
|
void ConstrainVariances(); |
|
|
|
// constrain states |
|
void ConstrainStates(); |
|
|
|
// fuse selected position, velocity and height measurements |
|
void FuseVelPosNED(); |
|
|
|
// fuse body frame velocity measurements |
|
void FuseBodyVel(); |
|
|
|
// fuse range beacon measurements |
|
void FuseRngBcn(); |
|
|
|
// use range beacon measurements to calculate a static position |
|
void FuseRngBcnStatic(); |
|
|
|
// calculate the offset from EKF vertical position datum to the range beacon system datum |
|
void CalcRangeBeaconPosDownOffset(float obsVar, Vector3f &vehiclePosNED, bool aligning); |
|
|
|
// fuse magnetometer measurements |
|
void FuseMagnetometer(); |
|
|
|
// fuse true airspeed measurements |
|
void FuseAirspeed(); |
|
|
|
// fuse synthetic sideslip measurement of zero |
|
void FuseSideslip(); |
|
|
|
// zero specified range of rows in the state covariance matrix |
|
void zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last); |
|
|
|
// zero specified range of columns in the state covariance matrix |
|
void zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last); |
|
|
|
// Reset the stored output history to current data |
|
void StoreOutputReset(void); |
|
|
|
// Reset the stored output quaternion history to current EKF state |
|
void StoreQuatReset(void); |
|
|
|
// Rotate the stored output quaternion history through a quaternion rotation |
|
void StoreQuatRotate(const Quaternion &deltaQuat); |
|
|
|
// store altimeter data |
|
void StoreBaro(); |
|
|
|
// recall altimeter data at the fusion time horizon |
|
// return true if data found |
|
bool RecallBaro(); |
|
|
|
// store range finder data |
|
void StoreRange(); |
|
|
|
// recall range finder data at the fusion time horizon |
|
// return true if data found |
|
bool RecallRange(); |
|
|
|
// store magnetometer data |
|
void StoreMag(); |
|
|
|
// recall magetometer data at the fusion time horizon |
|
// return true if data found |
|
bool RecallMag(); |
|
|
|
// store true airspeed data |
|
void StoreTAS(); |
|
|
|
// recall true airspeed data at the fusion time horizon |
|
// return true if data found |
|
bool RecallTAS(); |
|
|
|
// store optical flow data |
|
void StoreOF(); |
|
|
|
// recall optical flow data at the fusion time horizon |
|
// return true if data found |
|
bool RecallOF(); |
|
|
|
// calculate nav to body quaternions from body to nav rotation matrix |
|
void quat2Tbn(Matrix3f &Tbn, const Quaternion &quat) const; |
|
|
|
// calculate the NED earth spin vector in rad/sec |
|
void calcEarthRateNED(Vector3f &omega, int32_t latitude) const; |
|
|
|
// initialise the covariance matrix |
|
void CovarianceInit(); |
|
|
|
// helper functions for readIMUData |
|
bool readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt); |
|
bool readDeltaAngle(uint8_t ins_index, Vector3f &dAng); |
|
|
|
// helper functions for correcting IMU data |
|
void correctDeltaAngle(Vector3f &delAng, float delAngDT, uint8_t gyro_index); |
|
void correctDeltaVelocity(Vector3f &delVel, float delVelDT, uint8_t accel_index); |
|
|
|
// update IMU delta angle and delta velocity measurements |
|
void readIMUData(); |
|
|
|
// update estimate of inactive bias states |
|
void learnInactiveBiases(); |
|
|
|
// check for new valid GPS data and update stored measurement if available |
|
void readGpsData(); |
|
|
|
// check for new altitude measurement data and update stored measurement if available |
|
void readBaroData(); |
|
|
|
// check for new magnetometer data and update store measurements if available |
|
void readMagData(); |
|
|
|
// check for new airspeed data and update stored measurements if available |
|
void readAirSpdData(); |
|
|
|
// check for new range beacon data and update stored measurements if available |
|
void readRngBcnData(); |
|
|
|
// determine when to perform fusion of GPS position and velocity measurements |
|
void SelectVelPosFusion(); |
|
|
|
// determine when to perform fusion of range measurements take relative to a beacon at a known NED position |
|
void SelectRngBcnFusion(); |
|
|
|
// determine when to perform fusion of magnetometer measurements |
|
void SelectMagFusion(); |
|
|
|
// determine when to perform fusion of true airspeed measurements |
|
void SelectTasFusion(); |
|
|
|
// determine when to perform fusion of synthetic sideslp measurements |
|
void SelectBetaFusion(); |
|
|
|
// force alignment of the yaw angle using GPS velocity data |
|
void realignYawGPS(); |
|
|
|
// initialise the earth magnetic field states using declination and current attitude and magnetometer measurements |
|
|
|
// align the yaw angle for the quaternion states using the external yaw sensor |
|
void alignYawAngle(); |
|
|
|
// and return attitude quaternion |
|
Quaternion calcQuatAndFieldStates(float roll, float pitch); |
|
|
|
// zero stored variables |
|
void InitialiseVariables(); |
|
|
|
// zero stored variables related to mag |
|
void InitialiseVariablesMag(); |
|
|
|
// reset the horizontal position states uing the last GPS measurement |
|
void ResetPosition(void); |
|
|
|
// reset velocity states using the last GPS measurement |
|
void ResetVelocity(void); |
|
|
|
// reset the vertical position state using the last height measurement |
|
void ResetHeight(void); |
|
|
|
// return true if we should use the airspeed sensor |
|
bool useAirspeed(void) const; |
|
|
|
// return true if the vehicle code has requested the filter to be ready for flight |
|
bool readyToUseGPS(void) const; |
|
|
|
// return true if the filter to be ready to use the beacon range measurements |
|
bool readyToUseRangeBeacon(void) const; |
|
|
|
// Check for filter divergence |
|
void checkDivergence(void); |
|
|
|
// Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2 |
|
void calcIMU_Weighting(float K1, float K2); |
|
|
|
// return true if the filter is ready to start using optical flow measurements |
|
bool readyToUseOptFlow(void) const; |
|
|
|
// return true if the filter is ready to start using body frame odometry measurements |
|
bool readyToUseBodyOdm(void) const; |
|
|
|
// return true if we should use the range finder sensor |
|
bool useRngFinder(void) const; |
|
|
|
// determine when to perform fusion of optical flow measurements |
|
void SelectFlowFusion(); |
|
|
|
// determine when to perform fusion of body frame odometry measurements |
|
void SelectBodyOdomFusion(); |
|
|
|
// Estimate terrain offset using a single state EKF |
|
void EstimateTerrainOffset(); |
|
|
|
// fuse optical flow measurements into the main filter |
|
void FuseOptFlow(); |
|
|
|
// Control filter mode changes |
|
void controlFilterModes(); |
|
|
|
// Determine if we are flying or on the ground |
|
void detectFlight(); |
|
|
|
// Set inertial navigation aiding mode |
|
void setAidingMode(); |
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to |
|
// avoid unnecessary operations |
|
void setWindMagStateLearningMode(); |
|
|
|
// Check the alignmnent status of the tilt attitude |
|
// Used during initial bootstrap alignment of the filter |
|
void checkAttitudeAlignmentStatus(); |
|
|
|
// Control reset of yaw and magnetic field states |
|
void controlMagYawReset(); |
|
|
|
// Set the NED origin to be used until the next filter reset |
|
void setOrigin(const Location &loc); |
|
|
|
// determine if a takeoff is expected so that we can compensate for expected barometer errors due to ground effect |
|
bool getTakeoffExpected(); |
|
|
|
// determine if a touchdown is expected so that we can compensate for expected barometer errors due to ground effect |
|
bool getTouchdownExpected(); |
|
|
|
// Assess GPS data quality and set gpsGoodToAlign |
|
void calcGpsGoodToAlign(void); |
|
|
|
// set the class variable true if the delta angle bias variances are sufficiently small |
|
void checkGyroCalStatus(void); |
|
|
|
// update inflight calculaton that determines if GPS data is good enough for reliable navigation |
|
void calcGpsGoodForFlight(void); |
|
|
|
// Read the range finder and take new measurements if available |
|
// Apply a median filter to range finder data |
|
void readRangeFinder(); |
|
|
|
// check if the vehicle has taken off during optical flow navigation by looking at inertial and range finder data |
|
void detectOptFlowTakeoff(void); |
|
|
|
// align the NE earth magnetic field states with the published declination |
|
void alignMagStateDeclination(); |
|
|
|
// Fuse compass measurements using a simple declination observation (doesn't require magnetic field states) |
|
void fuseEulerYaw(bool usePredictedYaw, bool useExternalYawSensor); |
|
|
|
// Fuse declination angle to keep earth field declination from changing when we don't have earth relative observations. |
|
// Input is 1-sigma uncertainty in published declination |
|
void FuseDeclination(float declErr); |
|
|
|
// Propagate PVA solution forward from the fusion time horizon to the current time horizon |
|
// using a simple observer |
|
void calcOutputStates(); |
|
|
|
// calculate a filtered offset between baro height measurement and EKF height estimate |
|
void calcFiltBaroOffset(); |
|
|
|
// correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter. |
|
void correctEkfOriginHeight(); |
|
|
|
// Select height data to be fused from the available baro, range finder and GPS sources |
|
void selectHeightForFusion(); |
|
|
|
// zero attitude state covariances, but preserve variances |
|
void zeroAttCovOnly(); |
|
|
|
// record a yaw reset event |
|
void recordYawReset(); |
|
|
|
// record a magnetic field state reset event |
|
void recordMagReset(); |
|
|
|
// effective value of MAG_CAL |
|
uint8_t effective_magCal(void) const; |
|
|
|
// calculate the variances for the rotation vector equivalent |
|
Vector3f calcRotVecVariances(void); |
|
|
|
// initialise the quaternion covariances using rotation vector variances |
|
void initialiseQuatCovariances(const Vector3f &rotVarVec); |
|
|
|
// update timing statistics structure |
|
void updateTimingStatistics(void); |
|
|
|
// Update the state index limit based on which states are active |
|
void updateStateIndexLim(void); |
|
|
|
// Variables |
|
bool statesInitialised; // boolean true when filter states have been initialised |
|
bool velHealth; // boolean true if velocity measurements have passed innovation consistency check |
|
bool posHealth; // boolean true if position measurements have passed innovation consistency check |
|
bool hgtHealth; // boolean true if height measurements have passed innovation consistency check |
|
bool magHealth; // boolean true if magnetometer has passed innovation consistency check |
|
bool tasHealth; // boolean true if true airspeed has passed innovation consistency check |
|
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out |
|
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out |
|
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out |
|
bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out |
|
bool tasTimeout; // boolean true if true airspeed measurements have failed for too long and have timed out |
|
bool badMagYaw; // boolean true if the magnetometer is declared to be producing bad data |
|
bool badIMUdata; // boolean true if the bad IMU data is detected |
|
|
|
float gpsNoiseScaler; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts |
|
Vector28 Kfusion; // Kalman gain vector |
|
Matrix24 KH; // intermediate result used for covariance updates |
|
Matrix24 KHP; // intermediate result used for covariance updates |
|
Matrix24 P; // covariance matrix |
|
imu_ring_buffer_t<imu_elements> storedIMU; // IMU data buffer |
|
obs_ring_buffer_t<gps_elements> storedGPS; // GPS data buffer |
|
obs_ring_buffer_t<mag_elements> storedMag; // Magnetometer data buffer |
|
obs_ring_buffer_t<baro_elements> storedBaro; // Baro data buffer |
|
obs_ring_buffer_t<tas_elements> storedTAS; // TAS data buffer |
|
obs_ring_buffer_t<range_elements> storedRange; // Range finder data buffer |
|
imu_ring_buffer_t<output_elements> storedOutput;// output state buffer |
|
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation |
|
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2) |
|
ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2) |
|
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) |
|
ftype dtIMUavg; // expected time between IMU measurements (sec) |
|
ftype dtEkfAvg; // expected time between EKF updates (sec) |
|
ftype dt; // time lapsed since the last covariance prediction (sec) |
|
ftype hgtRate; // state for rate of change of height filter |
|
bool onGround; // true when the flight vehicle is definitely on the ground |
|
bool prevOnGround; // value of onGround from previous frame - used to detect transition |
|
bool inFlight; // true when the vehicle is definitely flying |
|
bool prevInFlight; // value inFlight from previous frame - used to detect transition |
|
bool manoeuvring; // boolean true when the flight vehicle is performing horizontal changes in velocity |
|
uint32_t airborneDetectTime_ms; // last time flight movement was detected |
|
Vector6 innovVelPos; // innovation output for a group of measurements |
|
Vector6 varInnovVelPos; // innovation variance output for a group of measurements |
|
bool fuseVelData; // this boolean causes the velNED measurements to be fused |
|
bool fusePosData; // this boolean causes the posNE measurements to be fused |
|
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused |
|
Vector3f innovMag; // innovation output from fusion of X,Y,Z compass measurements |
|
Vector3f varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements |
|
ftype innovVtas; // innovation output from fusion of airspeed measurements |
|
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements |
|
bool magFusePerformed; // boolean set to true when magnetometer fusion has been perfomred in that time step |
|
bool magFuseRequired; // boolean set to true when magnetometer fusion will be perfomred in the next time step |
|
uint32_t prevTasStep_ms; // time stamp of last TAS fusion step |
|
uint32_t prevBetaStep_ms; // time stamp of last synthetic sideslip fusion step |
|
uint32_t lastMagUpdate_us; // last time compass was updated in usec |
|
Vector3f velDotNED; // rate of change of velocity in NED frame |
|
Vector3f velDotNEDfilt; // low pass filtered velDotNED |
|
uint32_t imuSampleTime_ms; // time that the last IMU value was taken |
|
bool tasDataToFuse; // true when new airspeed data is waiting to be fused |
|
uint32_t lastBaroReceived_ms; // time last time we received baro height data |
|
uint16_t hgtRetryTime_ms; // time allowed without use of height measurements before a height timeout is declared |
|
uint32_t lastVelPassTime_ms; // time stamp when GPS velocity measurement last passed innovation consistency check (msec) |
|
uint32_t lastPosPassTime_ms; // time stamp when GPS position measurement last passed innovation consistency check (msec) |
|
uint32_t lastHgtPassTime_ms; // time stamp when height measurement last passed innovation consistency check (msec) |
|
uint32_t lastTasPassTime_ms; // time stamp when airspeed measurement last passed innovation consistency check (msec) |
|
uint32_t lastTimeGpsReceived_ms;// last time we received GPS data |
|
uint32_t timeAtLastAuxEKF_ms; // last time the auxiliary filter was run to fuse range or optical flow measurements |
|
uint32_t secondLastGpsTime_ms; // time of second last GPS fix used to determine how long since last update |
|
uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy |
|
bool allMagSensorsFailed; // true if all magnetometer sensors have timed out on this flight and we are no longer using magnetometer data |
|
uint32_t lastSynthYawTime_ms; // time stamp when synthetic yaw measurement was last fused to maintain covariance health (msec) |
|
uint32_t ekfStartTime_ms; // time the EKF was started (msec) |
|
Matrix24 nextP; // Predicted covariance matrix before addition of process noise to diagonals |
|
Vector2f lastKnownPositionNE; // last known position |
|
uint32_t lastDecayTime_ms; // time of last decay of GPS position offset |
|
float velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold |
|
float posTestRatio; // sum of squares of GPS position innovation divided by fail threshold |
|
float hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold |
|
Vector3f magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold |
|
float tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold |
|
bool inhibitWindStates; // true when wind states and covariances are to remain constant |
|
bool inhibitMagStates; // true when magnetic field states are inactive |
|
bool inhibitDelVelBiasStates; // true when IMU delta velocity bias states are inactive |
|
bool inhibitDelAngBiasStates; // true when IMU delta angle bias states are inactive |
|
bool gpsNotAvailable; // bool true when valid GPS data is not available |
|
struct Location EKF_origin; // LLH origin of the NED axis system |
|
bool validOrigin; // true when the EKF origin is valid |
|
float gpsSpdAccuracy; // estimated speed accuracy in m/s returned by the GPS receiver |
|
float gpsPosAccuracy; // estimated position accuracy in m returned by the GPS receiver |
|
float gpsHgtAccuracy; // estimated height accuracy in m returned by the GPS receiver |
|
uint32_t lastGpsVelFail_ms; // time of last GPS vertical velocity consistency check fail |
|
uint32_t lastGpsVelPass_ms; // time of last GPS vertical velocity consistency check pass |
|
uint32_t lastGpsAidBadTime_ms; // time in msec gps aiding was last detected to be bad |
|
float posDownAtTakeoff; // flight vehicle vertical position sampled at transition from on-ground to in-air and used as a reference (m) |
|
bool useGpsVertVel; // true if GPS vertical velocity should be used |
|
float yawResetAngle; // Change in yaw angle due to last in-flight yaw reset in radians. A positive value means the yaw angle has increased. |
|
uint32_t lastYawReset_ms; // System time at which the last yaw reset occurred. Returned by getLastYawResetAngle |
|
bool tiltAlignComplete; // true when tilt alignment is complete |
|
bool yawAlignComplete; // true when yaw alignment is complete |
|
bool magStateInitComplete; // true when the magnetic field states have been initialised |
|
uint8_t stateIndexLim; // Max state index used during matrix and array operations |
|
imu_elements imuDataDelayed; // IMU data at the fusion time horizon |
|
imu_elements imuDataNew; // IMU data at the current time horizon |
|
imu_elements imuDataDownSampledNew; // IMU data at the current time horizon that has been downsampled to a 100Hz rate |
|
Quaternion imuQuatDownSampleNew; // Quaternion obtained by rotating through the IMU delta angles since the start of the current down sampled frame |
|
uint8_t fifoIndexNow; // Global index for inertial and output solution at current time horizon |
|
uint8_t fifoIndexDelayed; // Global index for inertial and output solution at delayed/fusion time horizon |
|
baro_elements baroDataNew; // Baro data at the current time horizon |
|
baro_elements baroDataDelayed; // Baro data at the fusion time horizon |
|
uint8_t baroStoreIndex; // Baro data storage index |
|
range_elements rangeDataNew; // Range finder data at the current time horizon |
|
range_elements rangeDataDelayed;// Range finder data at the fusion time horizon |
|
uint8_t rangeStoreIndex; // Range finder data storage index |
|
tas_elements tasDataNew; // TAS data at the current time horizon |
|
tas_elements tasDataDelayed; // TAS data at the fusion time horizon |
|
uint8_t tasStoreIndex; // TAS data storage index |
|
mag_elements magDataNew; // Magnetometer data at the current time horizon |
|
mag_elements magDataDelayed; // Magnetometer data at the fusion time horizon |
|
uint8_t magStoreIndex; // Magnetometer data storage index |
|
gps_elements gpsDataNew; // GPS data at the current time horizon |
|
gps_elements gpsDataDelayed; // GPS data at the fusion time horizon |
|
uint8_t last_gps_idx; // sensor ID of the GPS receiver used for the last fusion or reset |
|
output_elements outputDataNew; // output state data at the current time step |
|
output_elements outputDataDelayed; // output state data at the current time step |
|
Vector3f delAngCorrection; // correction applied to delta angles used by output observer to track the EKF |
|
Vector3f velErrintegral; // integral of output predictor NED velocity tracking error (m) |
|
Vector3f posErrintegral; // integral of output predictor NED position tracking error (m.sec) |
|
float innovYaw; // compass yaw angle innovation (rad) |
|
uint32_t timeTasReceived_ms; // time last TAS data was received (msec) |
|
bool gpsGoodToAlign; // true when the GPS quality can be used to initialise the navigation system |
|
uint32_t magYawResetTimer_ms; // timer in msec used to track how long good magnetometer data is failing innovation consistency checks |
|
bool consistentMagData; // true when the magnetometers are passing consistency checks |
|
bool motorsArmed; // true when the motors have been armed |
|
bool prevMotorsArmed; // value of motorsArmed from previous frame |
|
bool posVelFusionDelayed; // true when the position and velocity fusion has been delayed |
|
bool optFlowFusionDelayed; // true when the optical flow fusion has been delayed |
|
bool airSpdFusionDelayed; // true when the air speed fusion has been delayed |
|
bool sideSlipFusionDelayed; // true when the sideslip fusion has been delayed |
|
Vector3f lastMagOffsets; // Last magnetometer offsets from COMPASS_ parameters. Used to detect parameter changes. |
|
bool lastMagOffsetsValid; // True when lastMagOffsets has been initialized |
|
Vector2f posResetNE; // Change in North/East position due to last in-flight reset in metres. Returned by getLastPosNorthEastReset |
|
uint32_t lastPosReset_ms; // System time at which the last position reset occurred. Returned by getLastPosNorthEastReset |
|
Vector2f velResetNE; // Change in North/East velocity due to last in-flight reset in metres/sec. Returned by getLastVelNorthEastReset |
|
uint32_t lastVelReset_ms; // System time at which the last velocity reset occurred. Returned by getLastVelNorthEastReset |
|
float posResetD; // Change in Down position due to last in-flight reset in metres. Returned by getLastPosDowntReset |
|
uint32_t lastPosResetD_ms; // System time at which the last position reset occurred. Returned by getLastPosDownReset |
|
float yawTestRatio; // square of magnetometer yaw angle innovation divided by fail threshold |
|
Quaternion prevQuatMagReset; // Quaternion from the last time the magnetic field state reset condition test was performed |
|
uint8_t fusionHorizonOffset; // number of IMU samples that the fusion time horizon has been shifted to prevent multiple EKF instances fusing data at the same time |
|
float hgtInnovFiltState; // state used for fitering of the height innovations used for pre-flight checks |
|
uint8_t magSelectIndex; // Index of the magnetometer that is being used by the EKF |
|
bool runUpdates; // boolean true when the EKF updates can be run |
|
uint32_t framesSincePredict; // number of frames lapsed since EKF instance did a state prediction |
|
bool startPredictEnabled; // boolean true when the frontend has given permission to start a new state prediciton cycle |
|
uint8_t localFilterTimeStep_ms; // average number of msec between filter updates |
|
float posDownObsNoise; // observation noise variance on the vertical position used by the state and covariance update step (m^2) |
|
Vector3f delAngCorrected; // corrected IMU delta angle vector at the EKF time horizon (rad) |
|
Vector3f delVelCorrected; // corrected IMU delta velocity vector at the EKF time horizon (m/s) |
|
bool magFieldLearned; // true when the magnetic field has been learned |
|
uint32_t wasLearningCompass_ms; // time when we were last waiting for compass learn to complete |
|
Vector3f earthMagFieldVar; // NED earth mag field variances for last learned field (mGauss^2) |
|
Vector3f bodyMagFieldVar; // XYZ body mag field variances for last learned field (mGauss^2) |
|
bool delAngBiasLearned; // true when the gyro bias has been learned |
|
nav_filter_status filterStatus; // contains the status of various filter outputs |
|
float ekfOriginHgtVar; // Variance of the EKF WGS-84 origin height estimate (m^2) |
|
double ekfGpsRefHgt; // floating point representation of the WGS-84 reference height used to convert GPS height to local height (m) |
|
uint32_t lastOriginHgtTime_ms; // last time the ekf's WGS-84 origin height was corrected |
|
Vector3f outputTrackError; // attitude (rad), velocity (m/s) and position (m) tracking error magnitudes from the output observer |
|
Vector3f velOffsetNED; // This adds to the earth frame velocity estimate at the IMU to give the velocity at the body origin (m/s) |
|
Vector3f posOffsetNED; // This adds to the earth frame position estimate at the IMU to give the position at the body origin (m) |
|
uint32_t firstInitTime_ms; // First time the initialise function was called (msec) |
|
uint32_t lastInitFailReport_ms; // Last time the buffer initialisation failure report was sent (msec) |
|
|
|
// Specify source of data to be used for a partial state reset |
|
// Checking the availability and quality of the data source specified is the responsibility of the caller |
|
enum resetDataSource { |
|
DEFAULT=0, // Use data source selected by reset function internal rules |
|
GPS=1, // Use GPS |
|
RNGBCN=2, // Use beacon range data |
|
FLOW=3, // Use optical flow rates |
|
BARO=4, // Use Baro height |
|
MAG=5, // Use magnetometer data |
|
RNGFND=6 // Use rangefinder data |
|
}; |
|
resetDataSource posResetSource; // preferred source of data for position reset |
|
resetDataSource velResetSource; // preferred source of data for a velocity reset |
|
|
|
// variables used to calculate a vertical velocity that is kinematically consistent with the vertical position |
|
float posDownDerivative; // Rate of change of vertical position (dPosD/dt) in m/s. This is the first time derivative of PosD. |
|
float posDown; // Down position state used in calculation of posDownRate |
|
|
|
// variables used by the pre-initialisation GPS checks |
|
struct Location gpsloc_prev; // LLH location of previous GPS measurement |
|
uint32_t lastPreAlignGpsCheckTime_ms; // last time in msec the GPS quality was checked during pre alignment checks |
|
float gpsDriftNE; // amount of drift detected in the GPS position during pre-flight GPs checks |
|
float gpsVertVelFilt; // amount of filtered vertical GPS velocity detected during pre-flight GPS checks |
|
float gpsHorizVelFilt; // amount of filtered horizontal GPS velocity detected during pre-flight GPS checks |
|
|
|
// variable used by the in-flight GPS quality check |
|
bool gpsSpdAccPass; // true when reported GPS speed accuracy passes in-flight checks |
|
bool ekfInnovationsPass; // true when GPS innovations pass in-flight checks |
|
float sAccFilterState1; // state variable for LPF applied to reported GPS speed accuracy |
|
float sAccFilterState2; // state variable for peak hold filter applied to reported GPS speed |
|
uint32_t lastGpsCheckTime_ms; // last time in msec the GPS quality was checked |
|
uint32_t lastInnovPassTime_ms; // last time in msec the GPS innovations passed |
|
uint32_t lastInnovFailTime_ms; // last time in msec the GPS innovations failed |
|
bool gpsAccuracyGood; // true when the GPS accuracy is considered to be good enough for safe flight. |
|
|
|
// States used for unwrapping of compass yaw error |
|
float innovationIncrement; |
|
float lastInnovation; |
|
|
|
// variables added for optical flow fusion |
|
obs_ring_buffer_t<of_elements> storedOF; // OF data buffer |
|
of_elements ofDataNew; // OF data at the current time horizon |
|
of_elements ofDataDelayed; // OF data at the fusion time horizon |
|
uint8_t ofStoreIndex; // OF data storage index |
|
bool flowDataToFuse; // true when optical flow data has is ready for fusion |
|
bool flowDataValid; // true while optical flow data is still fresh |
|
Vector2f auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator |
|
uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec) |
|
uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec) |
|
uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec) |
|
uint32_t gndHgtValidTime_ms; // time stamp from last terrain offset state update (msec) |
|
Matrix3f Tbn_flow; // transformation matrix from body to nav axes at the middle of the optical flow sample period |
|
Vector2 varInnovOptFlow; // optical flow innovations variances (rad/sec)^2 |
|
Vector2 innovOptFlow; // optical flow LOS innovations (rad/sec) |
|
float Popt; // Optical flow terrain height state covariance (m^2) |
|
float terrainState; // terrain position state (m) |
|
float prevPosN; // north position at last measurement |
|
float prevPosE; // east position at last measurement |
|
float varInnovRng; // range finder observation innovation variance (m^2) |
|
float innovRng; // range finder observation innovation (m) |
|
float hgtMea; // height measurement derived from either baro, gps or range finder data (m) |
|
bool inhibitGndState; // true when the terrain position state is to remain constant |
|
uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks |
|
Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail |
|
Vector2f auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator |
|
float R_LOS; // variance of optical flow rate measurements (rad/sec)^2 |
|
float auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail |
|
Vector2f flowGyroBias; // bias error of optical flow sensor gyro output |
|
bool rangeDataToFuse; // true when valid range finder height data has arrived at the fusion time horizon. |
|
bool baroDataToFuse; // true when valid baro height finder data has arrived at the fusion time horizon. |
|
bool gpsDataToFuse; // true when valid GPS data has arrived at the fusion time horizon. |
|
bool magDataToFuse; // true when valid magnetometer data has arrived at the fusion time horizon |
|
Vector2f heldVelNE; // velocity held when no aiding is available |
|
enum AidingMode {AID_ABSOLUTE=0, // GPS or some other form of absolute position reference aiding is being used (optical flow may also be used in parallel) so position estimates are absolute. |
|
AID_NONE=1, // no aiding is being used so only attitude and height estimates are available. Either constVelMode or constPosMode must be used to constrain tilt drift. |
|
AID_RELATIVE=2 // only optical flow aiding is being used so position estimates will be relative |
|
}; |
|
AidingMode PV_AidingMode; // Defines the preferred mode for aiding of velocity and position estimates from the INS |
|
AidingMode PV_AidingModePrev; // Value of PV_AidingMode from the previous frame - used to detect transitions |
|
bool gpsInhibit; // externally set flag informing the EKF not to use the GPS |
|
bool gndOffsetValid; // true when the ground offset state can still be considered valid |
|
Vector3f delAngBodyOF; // bias corrected delta angle of the vehicle IMU measured summed across the time since the last OF measurement |
|
float delTimeOF; // time that delAngBodyOF is summed across |
|
bool flowFusionActive; // true when optical flow fusion is active |
|
|
|
Vector3f accelPosOffset; // position of IMU accelerometer unit in body frame (m) |
|
|
|
// Range finder |
|
float baroHgtOffset; // offset applied when when switching to use of Baro height |
|
float rngOnGnd; // Expected range finder reading in metres when vehicle is on ground |
|
float storedRngMeas[2][3]; // Ringbuffer of stored range measurements for dual range sensors |
|
uint32_t storedRngMeasTime_ms[2][3]; // Ringbuffers of stored range measurement times for dual range sensors |
|
uint32_t lastRngMeasTime_ms; // Timestamp of last range measurement |
|
uint8_t rngMeasIndex[2]; // Current range measurement ringbuffer index for dual range sensors |
|
bool terrainHgtStable; // true when the terrain height is stable enough to be used as a height reference |
|
uint32_t terrainHgtStableSet_ms; // system time at which terrainHgtStable was set |
|
|
|
// body frame odometry fusion |
|
obs_ring_buffer_t<vel_odm_elements> storedBodyOdm; // body velocity data buffer |
|
vel_odm_elements bodyOdmDataNew; // Body frame odometry data at the current time horizon |
|
vel_odm_elements bodyOdmDataDelayed; // Body frame odometry data at the fusion time horizon |
|
uint32_t lastbodyVelPassTime_ms; // time stamp when the body velocity measurement last passed innovation consistency checks (msec) |
|
Vector3 bodyVelTestRatio; // Innovation test ratios for body velocity XYZ measurements |
|
Vector3 varInnovBodyVel; // Body velocity XYZ innovation variances (m/sec)^2 |
|
Vector3 innovBodyVel; // Body velocity XYZ innovations (m/sec) |
|
uint32_t prevBodyVelFuseTime_ms; // previous time all body velocity measurement components passed their innovation consistency checks (msec) |
|
uint32_t bodyOdmMeasTime_ms; // time body velocity measurements were accepted for input to the data buffer (msec) |
|
bool bodyVelFusionDelayed; // true when body frame velocity fusion has been delayed |
|
bool bodyVelFusionActive; // true when body frame velocity fusion is active |
|
|
|
// wheel sensor fusion |
|
uint32_t wheelOdmMeasTime_ms; // time wheel odometry measurements were accepted for input to the data buffer (msec) |
|
bool usingWheelSensors; // true when the body frame velocity fusion method should take onbservation data from the wheel odometry buffer |
|
obs_ring_buffer_t<wheel_odm_elements> storedWheelOdm; // body velocity data buffer |
|
wheel_odm_elements wheelOdmDataNew; // Body frame odometry data at the current time horizon |
|
wheel_odm_elements wheelOdmDataDelayed; // Body frame odometry data at the fusion time horizon |
|
|
|
// yaw sensor fusion |
|
uint32_t yawMeasTime_ms; |
|
obs_ring_buffer_t<yaw_elements> storedYawAng; |
|
yaw_elements yawAngDataNew; |
|
yaw_elements yawAngDataDelayed; |
|
|
|
// Range Beacon Sensor Fusion |
|
obs_ring_buffer_t<rng_bcn_elements> storedRangeBeacon; // Beacon range buffer |
|
rng_bcn_elements rngBcnDataNew; // Range beacon data at the current time horizon |
|
rng_bcn_elements rngBcnDataDelayed; // Range beacon data at the fusion time horizon |
|
uint8_t rngBcnStoreIndex; // Range beacon data storage index |
|
uint32_t lastRngBcnPassTime_ms; // time stamp when the range beacon measurement last passed innovation consistency checks (msec) |
|
float rngBcnTestRatio; // Innovation test ratio for range beacon measurements |
|
bool rngBcnHealth; // boolean true if range beacon measurements have passed innovation consistency check |
|
bool rngBcnTimeout; // boolean true if range beacon measurements have failed innovation consistency checks for too long |
|
float varInnovRngBcn; // range beacon observation innovation variance (m^2) |
|
float innovRngBcn; // range beacon observation innovation (m) |
|
uint32_t lastTimeRngBcn_ms[10]; // last time we received a range beacon measurement (msec) |
|
bool rngBcnDataToFuse; // true when there is new range beacon data to fuse |
|
Vector3f beaconVehiclePosNED; // NED position estimate from the beacon system (NED) |
|
float beaconVehiclePosErr; // estimated position error from the beacon system (m) |
|
uint32_t rngBcnLast3DmeasTime_ms; // last time the beacon system returned a 3D fix (msec) |
|
bool rngBcnGoodToAlign; // true when the range beacon systems 3D fix can be used to align the filter |
|
uint8_t lastRngBcnChecked; // index of the last range beacon checked for data |
|
Vector3f receiverPos; // receiver NED position (m) - alignment 3 state filter |
|
float receiverPosCov[3][3]; // Receiver position covariance (m^2) - alignment 3 state filter ( |
|
bool rngBcnAlignmentStarted; // True when the initial position alignment using range measurements has started |
|
bool rngBcnAlignmentCompleted; // True when the initial position alignment using range measurements has finished |
|
uint8_t lastBeaconIndex; // Range beacon index last read - used during initialisation of the 3-state filter |
|
Vector3f rngBcnPosSum; // Sum of range beacon NED position (m) - used during initialisation of the 3-state filter |
|
uint8_t numBcnMeas; // Number of beacon measurements - used during initialisation of the 3-state filter |
|
float rngSum; // Sum of range measurements (m) - used during initialisation of the 3-state filter |
|
uint8_t N_beacons; // Number of range beacons in use |
|
float maxBcnPosD; // maximum position of all beacons in the down direction (m) |
|
float minBcnPosD; // minimum position of all beacons in the down direction (m) |
|
bool usingMinHypothesis; // true when the min beacon constellation offset hypothesis is being used |
|
|
|
float bcnPosDownOffsetMax; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m) |
|
float bcnPosOffsetMaxVar; // Variance of the bcnPosDownOffsetMax state (m) |
|
float maxOffsetStateChangeFilt; // Filtered magnitude of the change in bcnPosOffsetHigh |
|
|
|
float bcnPosDownOffsetMin; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m) |
|
float bcnPosOffsetMinVar; // Variance of the bcnPosDownOffsetMin state (m) |
|
float minOffsetStateChangeFilt; // Filtered magnitude of the change in bcnPosOffsetLow |
|
|
|
Vector3f bcnPosOffsetNED; // NED position of the beacon origin in earth frame (m) |
|
bool bcnOriginEstInit; // True when the beacon origin has been initialised |
|
|
|
// Range Beacon Fusion Debug Reporting |
|
uint8_t rngBcnFuseDataReportIndex;// index of range beacon fusion data last reported |
|
struct { |
|
float rng; // measured range to beacon (m) |
|
float innov; // range innovation (m) |
|
float innovVar; // innovation variance (m^2) |
|
float testRatio; // innovation consistency test ratio |
|
Vector3f beaconPosNED; // beacon NED position |
|
} rngBcnFusionReport[10]; |
|
|
|
// height source selection logic |
|
uint8_t activeHgtSource; // integer defining active height source |
|
|
|
// Movement detector |
|
bool takeOffDetected; // true when takeoff for optical flow navigation has been detected |
|
float rngAtStartOfFlight; // range finder measurement at start of flight |
|
uint32_t timeAtArming_ms; // time in msec that the vehicle armed |
|
|
|
// baro ground effect |
|
bool expectGndEffectTakeoff; // external state from ArduCopter - takeoff expected |
|
uint32_t takeoffExpectedSet_ms; // system time at which expectGndEffectTakeoff was set |
|
bool expectGndEffectTouchdown; // external state from ArduCopter - touchdown expected |
|
uint32_t touchdownExpectedSet_ms; // system time at which expectGndEffectTouchdown was set |
|
float meaHgtAtTakeOff; // height measured at commencement of takeoff |
|
|
|
// control of post takeoff magentic field and heading resets |
|
bool finalInflightYawInit; // true when the final post takeoff initialisation of yaw angle has been performed |
|
bool finalInflightMagInit; // true when the final post takeoff initialisation of magnetic field states been performed |
|
bool magStateResetRequest; // true if magnetic field states need to be reset using the magnetomter measurements |
|
bool magYawResetRequest; // true if the vehicle yaw and magnetic field states need to be reset using the magnetometer measurements |
|
bool gpsYawResetRequest; // true if the vehicle yaw needs to be reset to the GPS course |
|
float posDownAtLastMagReset; // vertical position last time the mag states were reset (m) |
|
float yawInnovAtLastMagReset; // magnetic yaw innovation last time the yaw and mag field states were reset (rad) |
|
Quaternion quatAtLastMagReset; // quaternion states last time the mag states were reset |
|
|
|
// flags indicating severe numerical errors in innovation variance calculation for different fusion operations |
|
struct { |
|
bool bad_xmag:1; |
|
bool bad_ymag:1; |
|
bool bad_zmag:1; |
|
bool bad_airspeed:1; |
|
bool bad_sideslip:1; |
|
bool bad_nvel:1; |
|
bool bad_evel:1; |
|
bool bad_dvel:1; |
|
bool bad_npos:1; |
|
bool bad_epos:1; |
|
bool bad_dpos:1; |
|
bool bad_yaw:1; |
|
bool bad_decl:1; |
|
bool bad_xflow:1; |
|
bool bad_yflow:1; |
|
bool bad_rngbcn:1; |
|
bool bad_xvel:1; |
|
bool bad_yvel:1; |
|
bool bad_zvel:1; |
|
} faultStatus; |
|
|
|
// flags indicating which GPS quality checks are failing |
|
struct { |
|
bool bad_sAcc:1; |
|
bool bad_hAcc:1; |
|
bool bad_vAcc:1; |
|
bool bad_yaw:1; |
|
bool bad_sats:1; |
|
bool bad_VZ:1; |
|
bool bad_horiz_drift:1; |
|
bool bad_hdop:1; |
|
bool bad_vert_vel:1; |
|
bool bad_fix:1; |
|
bool bad_horiz_vel:1; |
|
} gpsCheckStatus; |
|
|
|
// states held by magnetometer fusion across time steps |
|
// magnetometer X,Y,Z measurements are fused across three time steps |
|
// to level computational load as this is an expensive operation |
|
struct { |
|
ftype q0; |
|
ftype q1; |
|
ftype q2; |
|
ftype q3; |
|
ftype magN; |
|
ftype magE; |
|
ftype magD; |
|
ftype magXbias; |
|
ftype magYbias; |
|
ftype magZbias; |
|
uint8_t obsIndex; |
|
Matrix3f DCM; |
|
Vector3f MagPred; |
|
ftype R_MAG; |
|
Vector9 SH_MAG; |
|
} mag_state; |
|
|
|
// string representing last reason for prearm failure |
|
char prearm_fail_string[40]; |
|
|
|
// performance counters |
|
AP_HAL::Util::perf_counter_t _perf_UpdateFilter; |
|
AP_HAL::Util::perf_counter_t _perf_CovariancePrediction; |
|
AP_HAL::Util::perf_counter_t _perf_FuseVelPosNED; |
|
AP_HAL::Util::perf_counter_t _perf_FuseMagnetometer; |
|
AP_HAL::Util::perf_counter_t _perf_FuseAirspeed; |
|
AP_HAL::Util::perf_counter_t _perf_FuseSideslip; |
|
AP_HAL::Util::perf_counter_t _perf_TerrainOffset; |
|
AP_HAL::Util::perf_counter_t _perf_FuseOptFlow; |
|
AP_HAL::Util::perf_counter_t _perf_FuseBodyOdom; |
|
AP_HAL::Util::perf_counter_t _perf_test[10]; |
|
|
|
// timing statistics |
|
struct ekf_timing timing; |
|
|
|
// should we assume zero sideslip? |
|
bool assume_zero_sideslip(void) const; |
|
|
|
// vehicle specific initial gyro bias uncertainty |
|
float InitialGyroBiasUncertainty(void) const; |
|
};
|
|
|