You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
5.3 KiB
177 lines
5.3 KiB
/* |
|
* Copyright (C) 2015-2016 Intel Corporation. All rights reserved. |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
#include <assert.h> |
|
|
|
#include <AP_Math/AP_Math.h> |
|
|
|
#include "SIM_Calibration.h" |
|
|
|
#define MAX_ANGULAR_SPEED (2 * M_PI) |
|
|
|
#include <stdio.h> |
|
|
|
SITL::Calibration::Calibration(const char *frame_str) |
|
: Aircraft(frame_str) |
|
{ |
|
mass = 1.5f; |
|
} |
|
|
|
void SITL::Calibration::update(const struct sitl_input &input) |
|
{ |
|
Vector3f rot_accel{0, 0, 0}; |
|
|
|
float switcher_pwm = input.servos[4]; |
|
if (switcher_pwm < 1100) { |
|
_stop_control(input, rot_accel); |
|
} else if (switcher_pwm < 1200) { |
|
_attitude_control(input, rot_accel); |
|
} else if (switcher_pwm < 1300) { |
|
_calibration_poses(rot_accel); |
|
} else { |
|
_angular_velocity_control(input, rot_accel); |
|
} |
|
|
|
accel_body(0, 0, 0); |
|
update_dynamics(rot_accel); |
|
update_position(); |
|
time_advance(); |
|
|
|
// update magnetic field |
|
update_mag_field_bf(); |
|
} |
|
|
|
void SITL::Calibration::_stop_control(const struct sitl_input &input, |
|
Vector3f& rot_accel) |
|
{ |
|
Vector3f desired_angvel{0, 0, 0}; |
|
Vector3f error = desired_angvel - gyro; |
|
float dt = frame_time_us * 1.0e-6f; |
|
rot_accel = error * (1.0f / dt); |
|
/* Provide a somewhat "smooth" transition */ |
|
rot_accel *= 0.002f; |
|
} |
|
|
|
void SITL::Calibration::_attitude_control(const struct sitl_input &input, |
|
Vector3f& rot_accel) |
|
{ |
|
float desired_roll = -M_PI + 2 * M_PI * (input.servos[5] - 1000) / 1000.f; |
|
float desired_pitch = -M_PI + 2 * M_PI * (input.servos[6] - 1000) / 1000.f; |
|
float desired_yaw = -M_PI + 2 * M_PI * (input.servos[7] - 1000) / 1000.f; |
|
|
|
_attitude_set(desired_roll, desired_pitch, desired_yaw, rot_accel); |
|
} |
|
|
|
|
|
void SITL::Calibration::_attitude_set(float desired_roll, float desired_pitch, float desired_yaw, |
|
Vector3f& rot_accel) |
|
{ |
|
float dt = frame_time_us * 1.0e-6f; |
|
|
|
Quaternion desired_q; |
|
desired_q.from_euler(desired_roll, desired_pitch, desired_yaw); |
|
desired_q.normalize(); |
|
|
|
Quaternion current_q; |
|
current_q.from_rotation_matrix(dcm); |
|
current_q.normalize(); |
|
|
|
Quaternion error_q = desired_q / current_q; |
|
|
|
Vector3f angle_differential; |
|
error_q.normalize(); |
|
error_q.to_axis_angle(angle_differential); |
|
|
|
Vector3f desired_angvel = angle_differential * (1 / dt); |
|
/* Provide a somewhat "smooth" transition */ |
|
desired_angvel *= .005f; |
|
|
|
Vector3f error = desired_angvel - gyro; |
|
rot_accel = error * (1.0f / dt); |
|
} |
|
|
|
void SITL::Calibration::_angular_velocity_control(const struct sitl_input &in, |
|
Vector3f& rot_accel) |
|
{ |
|
Vector3f axis{(float)(in.servos[5] - 1500), |
|
(float)(in.servos[6] - 1500), |
|
(float)(in.servos[7] - 1500)}; |
|
float theta = MAX_ANGULAR_SPEED * (in.servos[4] - 1300) / 700.f; |
|
float dt = frame_time_us * 1.0e-6f; |
|
|
|
if (axis.length() > 0) { |
|
axis.normalize(); |
|
} |
|
|
|
Vector3f desired_angvel = axis * theta; |
|
Vector3f error = desired_angvel - gyro; |
|
|
|
rot_accel = error * (1.0f / dt); |
|
/* Provide a somewhat "smooth" transition */ |
|
rot_accel *= .05f; |
|
} |
|
|
|
/* |
|
move continuously through 6 calibration poses, doing a rotation |
|
about each pose over 3 seconds |
|
*/ |
|
void SITL::Calibration::_calibration_poses(Vector3f& rot_accel) |
|
{ |
|
const struct pose { |
|
int16_t roll, pitch, yaw; |
|
uint8_t axis; |
|
} poses[] = { |
|
{ 0, 0, 0, 0 }, |
|
{ 0, 0, 0, 1 }, |
|
{ 0, 0, 0, 2 }, |
|
{ 90, 0, 0, 1 }, |
|
{ 0, 90, 0, 1 }, |
|
{ 0, 180, 0, 2 }, |
|
{ 45, 0, 0, 1 }, |
|
{ 0, 45, 0, 2 }, |
|
{ 0, 0, 45, 0 }, |
|
{ 30, 0, 0, 1 }, |
|
{ 0, 30, 0, 0 }, |
|
{ 30, 0, 0, 1 }, |
|
{ 0, 0, 30, 0 }, |
|
{ 0, 0, 30, 1 }, |
|
{ 60, 20, 0, 1 }, |
|
{ 0, 50, 10, 0 }, |
|
{ 0, 30, 50, 1 }, |
|
{ 0, 30, 50, 2 }, |
|
}; |
|
const float secs_per_pose = 6; |
|
const float rate = radians(360 / secs_per_pose); |
|
float tnow = AP_HAL::millis() * 1.0e-3; |
|
float t_in_pose = fmod(tnow, secs_per_pose); |
|
uint8_t pose_num = ((unsigned)(tnow / secs_per_pose)) % ARRAY_SIZE(poses); |
|
const struct pose &pose = poses[pose_num]; |
|
|
|
// let the sensor smoothing create sensible gyro values |
|
use_smoothing = true; |
|
dcm.identity(); |
|
dcm.from_euler(radians(pose.roll), radians(pose.pitch), radians(pose.yaw)); |
|
|
|
Vector3f axis; |
|
axis[pose.axis] = 1; |
|
float rot_angle = rate * t_in_pose; |
|
Matrix3f r2; |
|
r2.from_axis_angle(axis, rot_angle); |
|
dcm = r2 * dcm; |
|
|
|
accel_body(0, 0, -GRAVITY_MSS); |
|
accel_body = dcm.transposed() * accel_body; |
|
}
|
|
|