You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.4 KiB
108 lines
3.4 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
singlecopter simulator class |
|
*/ |
|
|
|
#include "SIM_SingleCopter.h" |
|
|
|
#include <stdio.h> |
|
|
|
using namespace SITL; |
|
|
|
SingleCopter::SingleCopter(const char *frame_str) : |
|
Aircraft(frame_str) |
|
{ |
|
mass = 2.0f; |
|
|
|
if (strstr(frame_str, "coax")) { |
|
frame_type = FRAME_COAX; |
|
} else { |
|
frame_type = FRAME_SINGLE; |
|
} |
|
|
|
/* |
|
scaling from motor power to Newtons. Allows the copter |
|
to hover against gravity when the motor is at hover_throttle |
|
*/ |
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; |
|
frame_height = 0.1; |
|
} |
|
|
|
/* |
|
update the copter simulation by one time step |
|
*/ |
|
void SingleCopter::update(const struct sitl_input &input) |
|
{ |
|
// get wind vector setup |
|
update_wind(input); |
|
|
|
float actuator[4]; |
|
for (uint8_t i=0; i<4; i++) { |
|
actuator[i] = constrain_float((input.servos[i]-1500) / 500.0f, -1, 1); |
|
} |
|
float thrust; |
|
float yaw_thrust; |
|
float roll_thrust; |
|
float pitch_thrust; |
|
|
|
switch (frame_type) { |
|
case FRAME_SINGLE: |
|
thrust = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1); |
|
yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + thrust * rotor_rot_accel; |
|
roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust; |
|
pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust; |
|
break; |
|
|
|
case FRAME_COAX: |
|
default: { |
|
float motor1 = constrain_float((input.servos[4]-1000) / 1000.0f, 0, 1); |
|
float motor2 = constrain_float((input.servos[5]-1000) / 1000.0f, 0, 1); |
|
thrust = 0.5f*(motor1 + motor2); |
|
yaw_thrust = -(actuator[0] + actuator[1] + actuator[2] + actuator[3]) * 0.25f * thrust + (motor2 - motor1) * rotor_rot_accel; |
|
roll_thrust = (actuator[0] - actuator[2]) * 0.5f * thrust; |
|
pitch_thrust = (actuator[1] - actuator[3]) * 0.5f * thrust; |
|
break; |
|
} |
|
} |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
Vector3f rot_accel(roll_thrust * roll_rate_max, |
|
pitch_thrust * pitch_rate_max, |
|
yaw_thrust * yaw_rate_max); |
|
|
|
// rotational air resistance |
|
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; |
|
|
|
// air resistance |
|
Vector3f air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity); |
|
|
|
// scale thrust to newtons |
|
thrust *= thrust_scale; |
|
|
|
accel_body = Vector3f(0, 0, -thrust / mass); |
|
accel_body += dcm.transposed() * air_resistance; |
|
|
|
update_dynamics(rot_accel); |
|
|
|
// update lat/lon/altitude |
|
update_position(); |
|
time_advance(); |
|
|
|
// update magnetic field |
|
update_mag_field_bf(); |
|
}
|
|
|