You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.0 KiB
225 lines
8.0 KiB
#include "Rover.h" |
|
|
|
#include <AP_RangeFinder/RangeFinder_Backend.h> |
|
#include <AP_VisualOdom/AP_VisualOdom.h> |
|
|
|
/* |
|
initialise compass's location used for declination |
|
*/ |
|
void Rover::init_compass_location(void) |
|
{ |
|
// update initial location used for declination |
|
if (!compass_init_location) { |
|
Location loc; |
|
if (ahrs.get_position(loc)) { |
|
compass.set_initial_location(loc.lat, loc.lng); |
|
compass_init_location = true; |
|
} |
|
} |
|
} |
|
|
|
// check for new compass data - 10Hz |
|
void Rover::update_compass(void) |
|
{ |
|
if (AP::compass().enabled() && compass.read()) { |
|
ahrs.set_compass(&compass); |
|
} |
|
} |
|
|
|
// Save compass offsets |
|
void Rover::compass_save() { |
|
if (AP::compass().enabled() && |
|
compass.get_learn_type() >= Compass::LEARN_INTERNAL && |
|
!arming.is_armed()) { |
|
compass.save_offsets(); |
|
} |
|
} |
|
|
|
// init beacons used for non-gps position estimates |
|
void Rover::init_beacon() |
|
{ |
|
g2.beacon.init(); |
|
} |
|
|
|
// init visual odometry sensor |
|
void Rover::init_visual_odom() |
|
{ |
|
g2.visual_odom.init(); |
|
} |
|
|
|
// update wheel encoders |
|
void Rover::update_wheel_encoder() |
|
{ |
|
// exit immediately if not enabled |
|
if (g2.wheel_encoder.num_sensors() == 0) { |
|
return; |
|
} |
|
|
|
// update encoders |
|
g2.wheel_encoder.update(); |
|
|
|
// initialise on first iteration |
|
const uint32_t now = AP_HAL::millis(); |
|
if (wheel_encoder_last_ekf_update_ms == 0) { |
|
wheel_encoder_last_ekf_update_ms = now; |
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { |
|
wheel_encoder_last_angle_rad[i] = g2.wheel_encoder.get_delta_angle(i); |
|
wheel_encoder_last_update_ms[i] = g2.wheel_encoder.get_last_reading_ms(i); |
|
} |
|
return; |
|
} |
|
|
|
// calculate delta angle and delta time and send to EKF |
|
// use time of last ping from wheel encoder |
|
// send delta time (time between this wheel encoder time and previous wheel encoder time) |
|
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time) |
|
// use system clock of last update instead of time of last ping |
|
const float system_dt = (now - wheel_encoder_last_ekf_update_ms) / 1000.0f; |
|
for (uint8_t i = 0; i < g2.wheel_encoder.num_sensors(); i++) { |
|
// calculate angular change (in radians) |
|
const float curr_angle_rad = g2.wheel_encoder.get_delta_angle(i); |
|
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad[i]; |
|
wheel_encoder_last_angle_rad[i] = curr_angle_rad; |
|
|
|
// save cumulative distances at current time (in meters) |
|
wheel_encoder_last_distance_m[i] = g2.wheel_encoder.get_distance(i); |
|
|
|
// calculate delta time |
|
float delta_time; |
|
const uint32_t latest_sensor_update_ms = g2.wheel_encoder.get_last_reading_ms(i); |
|
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms[i]; |
|
|
|
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf |
|
// check for old or insane sensor update times |
|
if (sensor_diff_ms == 0 || sensor_diff_ms > 100) { |
|
delta_time = system_dt; |
|
wheel_encoder_last_update_ms[i] = wheel_encoder_last_ekf_update_ms; |
|
} else { |
|
delta_time = sensor_diff_ms / 1000.0f; |
|
wheel_encoder_last_update_ms[i] = latest_sensor_update_ms; |
|
} |
|
|
|
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad) |
|
* delTime is the time interval for the measurement of delAng (sec) |
|
* timeStamp_ms is the time when the rotation was last measured (msec) |
|
* posOffset is the XYZ body frame position of the wheel hub (m) |
|
*/ |
|
EKF3.writeWheelOdom(delta_angle, delta_time, wheel_encoder_last_update_ms[i], g2.wheel_encoder.get_pos_offset(i), g2.wheel_encoder.get_wheel_radius(i)); |
|
} |
|
|
|
// record system time update for next iteration |
|
wheel_encoder_last_ekf_update_ms = now; |
|
} |
|
|
|
// Accel calibration |
|
|
|
void Rover::accel_cal_update() { |
|
if (hal.util->get_soft_armed()) { |
|
return; |
|
} |
|
ins.acal_update(); |
|
// check if new trim values, and set them float trim_roll, trim_pitch; |
|
float trim_roll, trim_pitch; |
|
if (ins.get_new_trim(trim_roll, trim_pitch)) { |
|
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); |
|
} |
|
} |
|
|
|
// read the rangefinders |
|
void Rover::read_rangefinders(void) |
|
{ |
|
rangefinder.update(); |
|
|
|
AP_RangeFinder_Backend *s0 = rangefinder.get_backend(0); |
|
AP_RangeFinder_Backend *s1 = rangefinder.get_backend(1); |
|
|
|
if (s0 == nullptr || s0->status() == RangeFinder::RangeFinder_NotConnected) { |
|
// this makes it possible to disable rangefinder at runtime |
|
return; |
|
} |
|
|
|
if (s1 != nullptr && s1->has_data()) { |
|
// we have two rangefinders |
|
obstacle.rangefinder1_distance_cm = s0->distance_cm(); |
|
obstacle.rangefinder2_distance_cm = s1->distance_cm(); |
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm) && |
|
obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(obstacle.rangefinder2_distance_cm)) { |
|
// we have an object on the left |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder1 obstacle %u cm", |
|
(unsigned int)obstacle.rangefinder1_distance_cm); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.rangefinder_turn_angle; |
|
} else if (obstacle.rangefinder2_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) { |
|
// we have an object on the right |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder2 obstacle %u cm", |
|
(unsigned int)obstacle.rangefinder2_distance_cm); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = -g.rangefinder_turn_angle; |
|
} |
|
} else { |
|
// we have a single rangefinder |
|
obstacle.rangefinder1_distance_cm = s0->distance_cm(); |
|
obstacle.rangefinder2_distance_cm = 0; |
|
if (obstacle.rangefinder1_distance_cm < static_cast<uint16_t>(g.rangefinder_trigger_cm)) { |
|
// obstacle detected in front |
|
if (obstacle.detected_count < 127) { |
|
obstacle.detected_count++; |
|
} |
|
if (obstacle.detected_count == g.rangefinder_debounce) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Rangefinder obstacle %u cm", |
|
(unsigned int)obstacle.rangefinder1_distance_cm); |
|
} |
|
obstacle.detected_time_ms = AP_HAL::millis(); |
|
obstacle.turn_angle = g.rangefinder_turn_angle; |
|
} |
|
} |
|
|
|
Log_Write_Rangefinder(); |
|
Log_Write_Depth(); |
|
|
|
// no object detected - reset after the turn time |
|
if (obstacle.detected_count >= g.rangefinder_debounce && |
|
AP_HAL::millis() > obstacle.detected_time_ms + g.rangefinder_turn_time*1000) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Obstacle passed"); |
|
obstacle.detected_count = 0; |
|
obstacle.turn_angle = 0; |
|
} |
|
} |
|
|
|
// initialise proximity sensor |
|
void Rover::init_proximity(void) |
|
{ |
|
g2.proximity.init(); |
|
g2.proximity.set_rangefinder(&rangefinder); |
|
} |
|
|
|
/* |
|
ask airspeed sensor for a new value, duplicated from plane |
|
*/ |
|
void Rover::read_airspeed(void) |
|
{ |
|
g2.airspeed.update(should_log(MASK_LOG_IMU)); |
|
} |
|
|
|
/* |
|
update RPM sensors |
|
*/ |
|
void Rover::rpm_update(void) |
|
{ |
|
rpm_sensor.update(); |
|
if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { |
|
if (should_log(MASK_LOG_RC)) { |
|
logger.Write_RPM(rpm_sensor); |
|
} |
|
} |
|
}
|
|
|