You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
886 lines
20 KiB
886 lines
20 KiB
// These are function definitions so the Menu can be constructed before the functions |
|
// are defined below. Order matters to the compiler. |
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_fbw(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_adc(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_imu(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_omega(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_battery(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_current(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of printf that reads from flash memory |
|
/*static int8_t help_test(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
Serial.printf_P(PSTR("\n" |
|
"Commands:\n" |
|
" radio\n" |
|
" servos\n" |
|
" g_gps\n" |
|
" imu\n" |
|
" battery\n" |
|
"\n")); |
|
}*/ |
|
|
|
// Creates a constant array of structs representing menu options |
|
// and stores them in Flash memory, not RAM. |
|
// User enters the string in the console to call the functions on the right. |
|
// See class Menu in AP_Coommon for implementation details |
|
const struct Menu::command test_menu_commands[] PROGMEM = { |
|
{"pwm", test_radio_pwm}, |
|
{"radio", test_radio}, |
|
{"failsafe", test_failsafe}, |
|
{"stabilize", test_stabilize}, |
|
{"fbw", test_fbw}, |
|
{"gps", test_gps}, |
|
{"adc", test_adc}, |
|
{"imu", test_imu}, |
|
{"dcm", test_dcm}, |
|
{"omega", test_omega}, |
|
{"battery", test_battery}, |
|
{"current", test_current}, |
|
{"relay", test_relay}, |
|
{"waypoints", test_wp}, |
|
{"airpressure", test_pressure}, |
|
{"compass", test_mag}, |
|
{"xbee", test_xbee}, |
|
{"eedump", test_eedump}, |
|
}; |
|
|
|
// A Macro to create the Menu |
|
MENU(test_menu, "test", test_menu_commands); |
|
|
|
int8_t |
|
test_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
Serial.printf_P(PSTR("Test Mode\n\n")); |
|
test_menu.run(); |
|
} |
|
|
|
static int8_t |
|
test_eedump(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int i, j; |
|
|
|
// hexdump the EEPROM |
|
for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { |
|
Serial.printf_P(PSTR("%04x:"), i); |
|
for (j = 0; j < 16; j++) |
|
Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j))); |
|
Serial.println(); |
|
} |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
output_manual_throttle(); |
|
|
|
g.rc_1.calc_pwm(); |
|
g.rc_2.calc_pwm(); |
|
g.rc_3.calc_pwm(); |
|
g.rc_4.calc_pwm(); |
|
|
|
Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), (g.rc_1.control_in), (g.rc_2.control_in), (g.rc_3.control_in), (g.rc_4.control_in), g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); |
|
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); |
|
|
|
/*Serial.printf_P(PSTR( "min: %d" |
|
"\t in: %d" |
|
"\t pwm_in: %d" |
|
"\t sout: %d" |
|
"\t pwm_out %d\n"), |
|
g.rc_3.radio_min, |
|
g.rc_3.control_in, |
|
g.rc_3.radio_in, |
|
g.rc_3.servo_out, |
|
g.rc_3.pwm_out |
|
); |
|
*/ |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
test_failsafe(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
byte fail_test; |
|
print_hit_enter(); |
|
for(int i = 0; i < 50; i++){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
oldSwitchPosition = readSwitch(); |
|
|
|
Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); |
|
while(g.rc_3.control_in > 0){ |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
while(1){ |
|
delay(20); |
|
read_radio(); |
|
|
|
if(g.rc_3.control_in > 0){ |
|
Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in); |
|
fail_test++; |
|
} |
|
|
|
if(oldSwitchPosition != readSwitch()){ |
|
Serial.printf_P(PSTR("CONTROL MODE CHANGED: ")); |
|
Serial.println(flight_mode_strings[readSwitch()]); |
|
fail_test++; |
|
} |
|
|
|
if(g.throttle_failsafe_enabled && g.rc_3.get_failsafe()){ |
|
Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in); |
|
Serial.println(flight_mode_strings[readSwitch()]); |
|
fail_test++; |
|
} |
|
|
|
if(fail_test > 0){ |
|
return (0); |
|
} |
|
if(Serial.available() > 0){ |
|
Serial.printf_P(PSTR("LOS caused no change in ACM.\n")); |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_stabilize(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
static byte ts_num; |
|
|
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// setup the radio |
|
// --------------- |
|
init_rc_in(); |
|
|
|
control_mode = STABILIZE; |
|
Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP()); |
|
Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); |
|
|
|
trim_radio(); |
|
|
|
motor_auto_safe = false; |
|
motor_armed = true; |
|
|
|
while(1){ |
|
// 50 hz |
|
if (millis() - fast_loopTimer > 19) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
fast_loopTimer = millis(); |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; |
|
|
|
if(g.compass_enabled){ |
|
medium_loopCounter++; |
|
if(medium_loopCounter == 5){ |
|
compass.read(); // Read magnetometer |
|
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading |
|
medium_loopCounter = 0; |
|
} |
|
} |
|
// for trim features |
|
read_trim_switch(); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
|
|
// allow us to zero out sensors with control switches |
|
if(g.rc_5.control_in < 600){ |
|
dcm.roll_sensor = dcm.pitch_sensor = 0; |
|
} |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_current_flight_mode(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
ts_num++; |
|
if (ts_num > 10){ |
|
ts_num = 0; |
|
Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "), |
|
(int)(dcm.roll_sensor/100), |
|
(int)(dcm.pitch_sensor/100), |
|
g.rc_1.pwm_out); |
|
|
|
print_motor_out(); |
|
} |
|
// R: 1417, L: 1453 F: 1453 B: 1417 |
|
|
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); |
|
//Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
|
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_fbw(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
static byte ts_num; |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// setup the radio |
|
// --------------- |
|
init_rc_in(); |
|
|
|
control_mode = FBW; |
|
//Serial.printf_P(PSTR("g.pid_stabilize_roll.kP: %4.4f\n"), g.pid_stabilize_roll.kP()); |
|
//Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); |
|
|
|
motor_armed = true; |
|
trim_radio(); |
|
|
|
nav_yaw = 8000; |
|
scaleLongDown = 1; |
|
|
|
while(1){ |
|
// 50 hz |
|
if (millis() - fast_loopTimer > 19) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
fast_loopTimer = millis(); |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; |
|
|
|
|
|
if(g.compass_enabled){ |
|
medium_loopCounter++; |
|
if(medium_loopCounter == 5){ |
|
compass.read(); // Read magnetometer |
|
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading |
|
medium_loopCounter = 0; |
|
} |
|
} |
|
// for trim features |
|
read_trim_switch(); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
|
|
// allow us to zero out sensors with control switches |
|
if(g.rc_5.control_in < 600){ |
|
dcm.roll_sensor = dcm.pitch_sensor = 0; |
|
} |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_current_flight_mode(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
ts_num++; |
|
if (ts_num == 5){ |
|
// 10 hz |
|
ts_num = 0; |
|
g_gps->longitude = 0; |
|
g_gps->latitude = 0; |
|
calc_nav(); |
|
|
|
Serial.printf_P(PSTR("ys:%ld, WP.lat:%ld, WP.lng:%ld, n_lat:%ld, n_lon:%ld, nroll:%ld, npitch:%ld, pmax:%ld, \t- "), |
|
dcm.yaw_sensor, |
|
next_WP.lat, |
|
next_WP.lng, |
|
nav_lat, |
|
nav_lon, |
|
nav_roll, |
|
nav_pitch, |
|
(long)g.pitch_max); |
|
|
|
print_motor_out(); |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_adc(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
adc.Init(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("ADC\n")); |
|
delay(1000); |
|
|
|
while(1){ |
|
for(int i = 0; i < 9; i++){ |
|
Serial.printf_P(PSTR("i:%d\t"),adc.Ch(i)); |
|
} |
|
Serial.println(); |
|
delay(20); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
static int8_t |
|
test_imu(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
//Serial.printf_P(PSTR("Calibrating.")); |
|
|
|
imu.init_gyro(); |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
//float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw; |
|
|
|
|
|
while(1){ |
|
delay(20); |
|
if (millis() - fast_loopTimer > 19) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator |
|
fast_loopTimer = millis(); |
|
/* |
|
Matrix3f temp = dcm.get_dcm_matrix(); |
|
|
|
sin_pitch = -temp.c.x; |
|
cos_pitch = sqrt(1 - (temp.c.x * temp.c.x)); |
|
|
|
cos_roll = temp.c.z / cos_pitch; |
|
sin_roll = temp.c.y / cos_pitch; |
|
|
|
yawvector.x = temp.a.x; // sin |
|
yawvector.y = temp.b.x; // cos |
|
yawvector.normalize(); |
|
cos_yaw = yawvector.y; // 0 x = north |
|
sin_yaw = yawvector.x; // 1 y |
|
*/ |
|
|
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
|
|
Vector3f accels = imu.get_accel(); |
|
Vector3f gyros = imu.get_gyro(); |
|
|
|
update_trig(); |
|
|
|
if(g.compass_enabled){ |
|
medium_loopCounter++; |
|
if(medium_loopCounter == 5){ |
|
compass.read(); // Read magnetometer |
|
compass.calculate(dcm.roll, dcm.pitch); // Calculate heading |
|
medium_loopCounter = 0; |
|
} |
|
} |
|
|
|
// We are using the IMU |
|
// --------------------- |
|
Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t" |
|
"G: %4.4f, %4.4f, %4.4f\t"), |
|
accels.x, accels.y, accels.z, |
|
gyros.x, gyros.y, gyros.z); |
|
|
|
Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld\t"), |
|
dcm.roll_sensor, |
|
dcm.pitch_sensor, |
|
dcm.yaw_sensor); |
|
|
|
Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"), |
|
cos_pitch_x, |
|
sin_pitch_y, |
|
cos_roll_x, |
|
sin_roll_y, |
|
cos_yaw_x, // x |
|
sin_yaw_y); // y |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_gps(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
/*while(1){ |
|
delay(100); |
|
|
|
update_GPS(); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
|
|
if(home.lng != 0){ |
|
break; |
|
} |
|
}*/ |
|
|
|
while(1){ |
|
delay(100); |
|
update_GPS(); |
|
|
|
calc_distance_error(); |
|
|
|
//if (g_gps->new_data){ |
|
Serial.printf_P(PSTR("Lat: %3.8f, Lon: %3.8f, alt %dm, spd: %d dist:%d, #sats: %d\n"), |
|
((float)g_gps->latitude / 10000000), |
|
((float)g_gps->longitude / 10000000), |
|
(int)g_gps->altitude / 100, |
|
(int)g_gps->ground_speed, |
|
(int)wp_distance, |
|
(int)g_gps->num_sats); |
|
//}else{ |
|
//Serial.print("."); |
|
//} |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_dcm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Gyro | Accel\n")); |
|
Vector3f _cam_vector; |
|
Vector3f _out_vector; |
|
|
|
G_Dt = .02; |
|
|
|
while(1){ |
|
for(byte i = 0; i <= 50; i++){ |
|
delay(20); |
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
} |
|
|
|
Matrix3f temp = dcm.get_dcm_matrix(); |
|
Matrix3f temp_t = dcm.get_dcm_transposed(); |
|
|
|
Serial.printf_P(PSTR("dcm\n" |
|
"%4.4f \t %4.4f \t %4.4f \n" |
|
"%4.4f \t %4.4f \t %4.4f \n" |
|
"%4.4f \t %4.4f \t %4.4f \n\n"), |
|
temp.a.x, temp.a.y, temp.a.z, |
|
temp.b.x, temp.b.y, temp.b.z, |
|
temp.c.x, temp.c.y, temp.c.z); |
|
|
|
int _pitch = degrees(-asin(temp.c.x)); |
|
int _roll = degrees(atan2(temp.c.y, temp.c.z)); |
|
int _yaw = degrees(atan2(temp.b.x, temp.a.x)); |
|
Serial.printf_P(PSTR( "angles\n" |
|
"%d \t %d \t %d\n\n"), |
|
_pitch, |
|
_roll, |
|
_yaw); |
|
|
|
//_out_vector = _cam_vector * temp; |
|
//Serial.printf_P(PSTR( "cam\n" |
|
// "%d \t %d \t %d\n\n"), |
|
// (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
static int8_t |
|
test_dcm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Gyro | Accel\n")); |
|
delay(1000); |
|
|
|
while(1){ |
|
Vector3f accels = dcm.get_accel(); |
|
Serial.print("accels.z:"); |
|
Serial.print(accels.z); |
|
Serial.print("omega.z:"); |
|
Serial.print(omega.z); |
|
delay(100); |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
*/ |
|
static int8_t |
|
test_omega(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
static byte ts_num; |
|
float old_yaw; |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Omega")); |
|
delay(1000); |
|
|
|
G_Dt = .02; |
|
|
|
while(1){ |
|
delay(20); |
|
// IMU |
|
// --- |
|
read_AHRS(); |
|
float my_oz = (dcm.yaw - old_yaw) * 50; |
|
|
|
old_yaw = dcm.yaw; |
|
|
|
ts_num++; |
|
if (ts_num > 2){ |
|
ts_num = 0; |
|
//Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz); |
|
Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz); |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
return (0); |
|
} |
|
|
|
static int8_t |
|
test_battery(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if BATTERY_EVENT == 1 |
|
for (int i = 0; i < 20; i++){ |
|
delay(20); |
|
read_battery(); |
|
} |
|
Serial.printf_P(PSTR("Volts: 1:")); |
|
Serial.print(battery_voltage1, 4); |
|
Serial.print(" 2:"); |
|
Serial.print(battery_voltage2, 4); |
|
Serial.print(" 3:"); |
|
Serial.print(battery_voltage3, 4); |
|
Serial.print(" 4:"); |
|
Serial.println(battery_voltage4, 4); |
|
#else |
|
Serial.printf_P(PSTR("Not enabled\n")); |
|
|
|
#endif |
|
return (0); |
|
} |
|
|
|
static int8_t |
|
test_current(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delta_ms_medium_loop = 100; |
|
|
|
while(1){ |
|
delay(100); |
|
read_radio(); |
|
read_current(); |
|
Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), current_voltage, current_amps, current_total); |
|
|
|
//if(g.rc_3.control_in > 0){ |
|
APM_RC.OutputCh(CH_1, g.rc_3.radio_in); |
|
APM_RC.OutputCh(CH_2, g.rc_3.radio_in); |
|
APM_RC.OutputCh(CH_3, g.rc_3.radio_in); |
|
APM_RC.OutputCh(CH_4, g.rc_3.radio_in); |
|
//} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
static int8_t |
|
test_relay(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1){ |
|
Serial.println("Relay on"); |
|
relay_on(); |
|
delay(3000); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
|
|
Serial.println("Relay off"); |
|
relay_off(); |
|
delay(3000); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_wp(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
delay(1000); |
|
read_EEPROM_waypoint_info(); |
|
|
|
|
|
// save the alitude above home option |
|
if(g.RTL_altitude == -1){ |
|
Serial.printf_P(PSTR("Hold current altitude\n")); |
|
}else{ |
|
Serial.printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude); |
|
} |
|
|
|
Serial.printf_P(PSTR("%d waypoints\n"), (int)g.waypoint_total); |
|
Serial.printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius); |
|
Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); |
|
|
|
for(byte i = 0; i <= g.waypoint_total; i++){ |
|
struct Location temp = get_wp_with_index(i); |
|
print_waypoint(&temp, i); |
|
} |
|
|
|
return (0); |
|
} |
|
|
|
|
|
static int8_t |
|
test_xbee(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); |
|
while(1){ |
|
delay(250); |
|
// Timeout set high enough for X-CTU RSSI Calc over XBee @ 115200 |
|
Serial3.printf_P(PSTR("0123456789:;<=>?@ABCDEFGHIJKLMNO\n")); |
|
//Serial.print("X"); |
|
// Default 32bit data from X-CTU Range Test |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_pressure(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
uint32_t sum; |
|
|
|
Serial.printf_P(PSTR("Uncalibrated Abs Airpressure\n")); |
|
Serial.printf_P(PSTR("Altitude is relative to the start of this test\n")); |
|
print_hit_enter(); |
|
|
|
Serial.printf_P(PSTR("\nCalibrating....\n")); |
|
/* |
|
for (int i = 1; i < 301; i++) { |
|
read_barometer(); |
|
if(i > 200) |
|
sum += abs_pressure; |
|
delay(10); |
|
} |
|
ground_pressure = (float)sum / 100.0; |
|
*/ |
|
|
|
home.alt = 0; |
|
wp_distance = 0; |
|
init_pressure_ground(); |
|
|
|
while(1){ |
|
if (millis()-fast_loopTimer > 9) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer; |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; // used by DCM integrator |
|
fast_loopTimer = millis(); |
|
|
|
|
|
calc_altitude_error(); |
|
calc_nav_throttle(); |
|
} |
|
|
|
if (millis()-medium_loopTimer > 100) { |
|
medium_loopTimer = millis(); |
|
|
|
read_radio(); // read the radio first |
|
next_WP.alt = home.alt + g.rc_6.control_in; // 0 - 2000 (20 meters) |
|
read_trim_switch(); |
|
read_barometer(); |
|
|
|
Serial.printf_P(PSTR("AP: %ld,\tAlt: %ld, \tnext_alt: %ld \terror: %ld, \tcruise: %d, \t out:%d\n"), |
|
abs_pressure, |
|
current_loc.alt, |
|
next_WP.alt, |
|
altitude_error, |
|
(int)g.throttle_cruise, |
|
g.rc_3.servo_out); |
|
|
|
/* |
|
Serial.print("Altitude: "); |
|
Serial.print((int)current_loc.alt,DEC); |
|
Serial.print("\tnext_alt: "); |
|
Serial.print((int)next_WP.alt,DEC); |
|
Serial.print("\talt_err: "); |
|
Serial.print((int)altitude_error,DEC); |
|
Serial.print("\ttNom: "); |
|
Serial.print(g.,DEC); |
|
Serial.print("\ttOut: "); |
|
Serial.println(g.rc_3.servo_out,DEC); |
|
*/ |
|
//Serial.print(" Raw pressure value: "); |
|
//Serial.println(abs_pressure); |
|
} |
|
|
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_mag(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if(g.compass_enabled == false){ |
|
Serial.printf_P(PSTR("Compass disabled\n")); |
|
return (0); |
|
}else{ |
|
print_hit_enter(); |
|
while(1){ |
|
delay(250); |
|
compass.read(); |
|
compass.calculate(0,0); |
|
Serial.printf_P(PSTR("Heading: (")); |
|
Serial.print(ToDeg(compass.heading)); |
|
Serial.printf_P(PSTR(") XYZ: (")); |
|
Serial.print(compass.mag_x); |
|
Serial.print(comma); |
|
Serial.print(compass.mag_y); |
|
Serial.print(comma); |
|
Serial.print(compass.mag_z); |
|
Serial.println(")"); |
|
if(Serial.available() > 0){ |
|
return (0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void print_hit_enter() |
|
{ |
|
Serial.printf_P(PSTR("Hit Enter to exit.\n\n")); |
|
} |
|
|
|
void fake_out_gps() |
|
{ |
|
static float rads; |
|
g_gps->new_data = true; |
|
g_gps->fix = true; |
|
|
|
int length = g.rc_6.control_in; |
|
rads += .05; |
|
|
|
if (rads > 6.28){ |
|
rads = 0; |
|
} |
|
|
|
g_gps->latitude = 377696000; // Y |
|
g_gps->longitude = -1224319000; // X |
|
g_gps->altitude = 9000; // meters * 100 |
|
|
|
//next_WP.lng = home.lng - length * sin(rads); // X |
|
//next_WP.lat = home.lat + length * cos(rads); // Y |
|
} |
|
|
|
|
|
|
|
void print_motor_out(){ |
|
Serial.printf("out: R: %d, L: %d F: %d B: %d\n", |
|
(motor_out[RIGHT] - g.rc_3.radio_min), |
|
(motor_out[LEFT] - g.rc_3.radio_min), |
|
(motor_out[FRONT] - g.rc_3.radio_min), |
|
(motor_out[BACK] - g.rc_3.radio_min)); |
|
}
|
|
|