You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
9.1 KiB
322 lines
9.1 KiB
/* |
|
APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino |
|
Code by Jordi Muñoz and Jose Julio. DIYDrones.com |
|
|
|
This library is free software; you can redistribute it and/or |
|
modify it under the terms of the GNU Lesser General Public |
|
License as published by the Free Software Foundation; either |
|
version 2.1 of the License, or (at your option) any later version. |
|
|
|
RC Input : PPM signal on IC4 pin |
|
RC Output : 11 Servo outputs (standard 20ms frame) |
|
|
|
Methods: |
|
Init() : Initialization of interrupts an Timers |
|
OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10 |
|
InputCh(ch) : Read a channel input value. ch=0..7 |
|
GetState() : Returns the state of the input. 1 => New radio frame to process |
|
Automatically resets when we call InputCh to read channels |
|
|
|
*/ |
|
#include "APM_RC_APM1.h" |
|
|
|
#include <avr/interrupt.h> |
|
#include "WProgram.h" |
|
|
|
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__) |
|
# error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target. |
|
#else |
|
|
|
// Variable definition for Input Capture interrupt |
|
volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400}; |
|
volatile uint8_t APM_RC_APM1::_radio_status=0; |
|
|
|
/**************************************************** |
|
Input Capture Interrupt ICP4 => PPM signal read |
|
****************************************************/ |
|
void APM_RC_APM1::_timer4_capt_cb(void) |
|
{ |
|
static uint16_t ICR4_old; |
|
static uint8_t PPM_Counter=0; |
|
|
|
uint16_t Pulse; |
|
uint16_t Pulse_Width; |
|
|
|
Pulse=ICR4; |
|
if (Pulse<ICR4_old) { // Take care of the overflow of Timer4 (TOP=40000) |
|
Pulse_Width=(Pulse + 40000)-ICR4_old; // Calculating pulse |
|
} |
|
else { |
|
Pulse_Width=Pulse-ICR4_old; // Calculating pulse |
|
} |
|
|
|
if (Pulse_Width>8000) { // SYNC pulse? |
|
PPM_Counter=0; |
|
} |
|
else { |
|
if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel? |
|
_PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse. |
|
|
|
if (PPM_Counter >= NUM_CHANNELS) { |
|
_radio_status = 1; |
|
} |
|
} |
|
} |
|
ICR4_old = Pulse; |
|
} |
|
|
|
|
|
// Constructors //////////////////////////////////////////////////////////////// |
|
|
|
APM_RC_APM1::APM_RC_APM1() |
|
{ |
|
} |
|
|
|
// Public Methods ////////////////////////////////////////////////////////////// |
|
void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg ) |
|
{ |
|
|
|
isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb ); |
|
|
|
// Init PWM Timer 1 |
|
pinMode(11,OUTPUT); //OUT9 (PB5/OC1A) |
|
pinMode(12,OUTPUT); //OUT2 (PB6/OC1B) |
|
pinMode(13,OUTPUT); //OUT3 (PB7/OC1C) |
|
|
|
//Remember the registers not declared here remains zero by default... |
|
TCCR1A =((1<<WGM11)|(1<<COM1A1)|(1<<COM1B1)|(1<<COM1C1)); //Please read page 131 of DataSheet, we are changing the registers settings of WGM11,COM1B1,COM1A1 to 1 thats all... |
|
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11); //Prescaler set to 8, that give us a resolution of 0.5us, read page 134 of data sheet |
|
OCR1A = 0xFFFF; // Init ODR registers to nil output signal |
|
OCR1B = 0xFFFF; |
|
OCR1C = 0xFFFF; |
|
ICR1 = 40000; //50hz freq...Datasheet says (system_freq/prescaler)/target frequency. So (16000000hz/8)/50hz=40000, |
|
|
|
// Init PWM Timer 3 |
|
pinMode(2,OUTPUT); //OUT7 (PE4/OC3B) |
|
pinMode(3,OUTPUT); //OUT6 (PE5/OC3C) |
|
pinMode(5,OUTPUT); //OUT10(PE3/OC3A) |
|
TCCR3A =((1<<WGM31)|(1<<COM3A1)|(1<<COM3B1)|(1<<COM3C1)); |
|
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31); |
|
OCR3A = 0xFFFF; // Init ODR registers to nil output signal |
|
OCR3B = 0xFFFF; |
|
OCR3C = 0xFFFF; |
|
ICR3 = 40000; //50hz freq |
|
|
|
// Init PWM Timer 5 |
|
pinMode(44,OUTPUT); //OUT1 (PL5/OC5C) |
|
pinMode(45,OUTPUT); //OUT0 (PL4/OC5B) |
|
pinMode(46,OUTPUT); //OUT8 (PL3/OC5A) |
|
|
|
TCCR5A =((1<<WGM51)|(1<<COM5A1)|(1<<COM5B1)|(1<<COM5C1)); |
|
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51); |
|
OCR5A = 0xFFFF; // Init ODR registers to nil output signal |
|
OCR5B = 0xFFFF; |
|
OCR5C = 0xFFFF; |
|
ICR5 = 40000; //50hz freq |
|
|
|
// Init PPM input and PWM Timer 4 |
|
pinMode(49, INPUT); // ICP4 pin (PL0) (PPM input) |
|
pinMode(7,OUTPUT); //OUT5 (PH4/OC4B) |
|
pinMode(8,OUTPUT); //OUT4 (PH5/OC4C) |
|
|
|
TCCR4A =((1<<WGM40)|(1<<WGM41)|(1<<COM4C1)|(1<<COM4B1)|(1<<COM4A1)); |
|
//Prescaler set to 8, that give us a resolution of 0.5us |
|
// Input Capture rising edge |
|
TCCR4B = ((1<<WGM43)|(1<<WGM42)|(1<<CS41)|(1<<ICES4)); |
|
OCR4B = 0xFFFF; // Init OCR registers to nil output signal |
|
OCR4C = 0xFFFF; |
|
OCR4A = 40000; ///50hz freq. |
|
|
|
//TCCR4B |=(1<<ICES4); //Changing edge detector (rising edge). |
|
//TCCR4B &=(~(1<<ICES4)); //Changing edge detector. (falling edge) |
|
TIMSK4 |= (1<<ICIE4); // Enable Input Capture interrupt. Timer interrupt mask |
|
} |
|
|
|
void APM_RC_APM1::OutputCh(uint8_t ch, uint16_t pwm) |
|
{ |
|
pwm=constrain(pwm,MIN_PULSEWIDTH,MAX_PULSEWIDTH); |
|
pwm<<=1; // pwm*2; |
|
|
|
switch(ch) |
|
{ |
|
case 0: OCR5B=pwm; break; //ch0 |
|
case 1: OCR5C=pwm; break; //ch1 |
|
case 2: OCR1B=pwm; break; //ch2 |
|
case 3: OCR1C=pwm; break; //ch3 |
|
case 4: OCR4C=pwm; break; //ch4 |
|
case 5: OCR4B=pwm; break; //ch5 |
|
case 6: OCR3C=pwm; break; //ch6 |
|
case 7: OCR3B=pwm; break; //ch7 |
|
case 8: OCR5A=pwm; break; //ch8, PL3 |
|
case 9: OCR1A=pwm; break; //ch9, PB5 |
|
case 10: OCR3A=pwm; break; //ch10, PE3 |
|
} |
|
} |
|
|
|
uint16_t APM_RC_APM1::InputCh(uint8_t ch) |
|
{ |
|
uint16_t result; |
|
|
|
if (_HIL_override[ch] != 0) { |
|
return _HIL_override[ch]; |
|
} |
|
|
|
// Because servo pulse variables are 16 bits and the interrupts are running values could be corrupted. |
|
// We dont want to stop interrupts to read radio channels so we have to do two readings to be sure that the value is correct... |
|
result = _PWM_RAW[ch]; |
|
if (result != _PWM_RAW[ch]) { |
|
result = _PWM_RAW[ch]; // if the results are different we make a third reading (this should be fine) |
|
} |
|
result >>= 1; // Because timer runs at 0.5us we need to do value/2 |
|
|
|
// Limit values to a valid range |
|
result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH); |
|
_radio_status=0; // Radio channel read |
|
return(result); |
|
} |
|
|
|
uint8_t APM_RC_APM1::GetState(void) |
|
{ |
|
return(_radio_status); |
|
} |
|
|
|
|
|
// InstantPWM implementation |
|
void APM_RC_APM1::Force_Out(void) |
|
{ |
|
Force_Out0_Out1(); |
|
Force_Out2_Out3(); |
|
Force_Out6_Out7(); |
|
} |
|
// This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use |
|
void APM_RC_APM1::Force_Out0_Out1(void) |
|
{ |
|
if (TCNT5>5000) // We take care that there are not a pulse in the output |
|
TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000 |
|
} |
|
// This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use |
|
void APM_RC_APM1::Force_Out2_Out3(void) |
|
{ |
|
if (TCNT1>5000) |
|
TCNT1=39990; |
|
} |
|
// This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use |
|
void APM_RC_APM1::Force_Out6_Out7(void) |
|
{ |
|
if (TCNT3>5000) |
|
TCNT3=39990; |
|
} |
|
|
|
/* --------------------- OUTPUT SPEED CONTROL --------------------- */ |
|
|
|
// Output rate options: |
|
#define OUTPUT_SPEED_50HZ 0 |
|
#define OUTPUT_SPEED_200HZ 1 |
|
#define OUTPUT_SPEED_400HZ 2 |
|
|
|
void APM_RC_APM1::SetFastOutputChannels(uint32_t chmask) |
|
{ |
|
if ((chmask & ( MSK_CH_1 | MSK_CH_2 | MSK_CH_9)) != 0) |
|
_set_speed_ch1_ch2_ch9(OUTPUT_SPEED_400HZ); |
|
|
|
if ((chmask & ( MSK_CH_3 | MSK_CH_4 | MSK_CH_10 )) != 0) |
|
_set_speed_ch3_ch4_ch10(OUTPUT_SPEED_400HZ); |
|
|
|
if ((chmask & ( MSK_CH_5 | MSK_CH_6 )) != 0) |
|
_set_speed_ch5_ch6(OUTPUT_SPEED_400HZ); |
|
|
|
if ((chmask & ( MSK_CH_7 | MSK_CH_8 | MSK_CH_11 )) != 0) |
|
_set_speed_ch7_ch8_ch11(OUTPUT_SPEED_400HZ); |
|
|
|
} |
|
|
|
void APM_RC_APM1::_set_speed_ch1_ch2_ch9(uint8_t speed) |
|
{ |
|
switch(speed) { |
|
case OUTPUT_SPEED_400HZ: |
|
ICR1= 5000; |
|
break; |
|
case OUTPUT_SPEED_200HZ: |
|
ICR1= 10000; |
|
break; |
|
case OUTPUT_SPEED_50HZ: |
|
default: |
|
ICR1 = 40000; |
|
break; |
|
} |
|
} |
|
|
|
void APM_RC_APM1::_set_speed_ch3_ch4_ch10(uint8_t speed) |
|
{ |
|
switch(speed) { |
|
case OUTPUT_SPEED_400HZ: |
|
ICR5= 5000; |
|
break; |
|
case OUTPUT_SPEED_200HZ: |
|
ICR5= 10000; |
|
break; |
|
case OUTPUT_SPEED_50HZ: |
|
default: |
|
ICR5 = 40000; |
|
break; |
|
} |
|
} |
|
|
|
void APM_RC_APM1::_set_speed_ch7_ch8_ch11(uint8_t speed) |
|
{ |
|
switch(speed) { |
|
case OUTPUT_SPEED_400HZ: |
|
ICR3 = 5000; |
|
break; |
|
case OUTPUT_SPEED_200HZ: |
|
ICR3 = 10000; |
|
break; |
|
case OUTPUT_SPEED_50HZ: |
|
default: |
|
ICR3 = 40000; |
|
break; |
|
} |
|
} |
|
|
|
void APM_RC_APM1::_set_speed_ch5_ch6(uint8_t speed) |
|
{ |
|
/* This function intentionally left blank: |
|
* Can't change output speed of ch5 (OCR4B) and ch6 (OCR4C). |
|
* Timer 4 period controlled by OCR4A, and used for input |
|
* capture on ICR4. |
|
* If the period of Timer 4 must be changed, the input capture |
|
* code will have to be adjusted as well |
|
*/ |
|
} |
|
|
|
// allow HIL override of RC values |
|
// A value of -1 means no change |
|
// A value of 0 means no override, use the real RC values |
|
bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS]) |
|
{ |
|
uint8_t sum = 0; |
|
for (uint8_t i=0; i<NUM_CHANNELS; i++) { |
|
if (v[i] != -1) { |
|
_HIL_override[i] = v[i]; |
|
} |
|
if (_HIL_override[i] != 0) { |
|
sum++; |
|
} |
|
} |
|
_radio_status = 1; |
|
if (sum == 0) { |
|
return 0; |
|
} else { |
|
return 1; |
|
} |
|
} |
|
|
|
void APM_RC_APM1::clearOverride(void) |
|
{ |
|
for (uint8_t i=0; i<NUM_CHANNELS; i++) { |
|
_HIL_override[i] = 0; |
|
} |
|
} |
|
|
|
|
|
#endif // defined(ATMega1280)
|
|
|