You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
654 lines
37 KiB
654 lines
37 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "Copter.h" |
|
|
|
#if POSHOLD_ENABLED == ENABLED |
|
|
|
/* |
|
* control_poshold.pde - init and run calls for PosHold flight mode |
|
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller |
|
*/ |
|
|
|
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter |
|
|
|
// 400hz loop update rate |
|
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter |
|
#define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER |
|
#define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged |
|
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. |
|
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low. |
|
#define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz |
|
#define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate |
|
#define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate() |
|
|
|
// definitions that are independent of main loop rate |
|
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied |
|
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s |
|
|
|
// mission state enumeration |
|
enum poshold_rp_mode { |
|
POSHOLD_PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch) |
|
POSHOLD_BRAKE, // this axis is braking towards zero |
|
POSHOLD_BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage) |
|
POSHOLD_BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed) |
|
POSHOLD_LOITER, // both vehicle axis are holding position |
|
POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input) |
|
}; |
|
|
|
static struct { |
|
poshold_rp_mode roll_mode : 3; // roll mode: pilot override, brake or loiter |
|
poshold_rp_mode pitch_mode : 3; // pitch mode: pilot override, brake or loiter |
|
uint8_t braking_time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking |
|
uint8_t braking_time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking |
|
uint8_t loiter_reset_I : 1; // true the very first time PosHold enters loiter, thereafter we trust the i terms loiter has |
|
|
|
// pilot input related variables |
|
float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero) |
|
float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero) |
|
|
|
// braking related variables |
|
float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate) |
|
int16_t brake_roll; // target roll angle during braking periods |
|
int16_t brake_pitch; // target pitch angle during braking periods |
|
int16_t brake_timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking |
|
int16_t brake_timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking |
|
int16_t brake_angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time |
|
int16_t brake_angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time |
|
int16_t brake_to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_BRAKE_TO_LOITER |
|
|
|
// loiter related variables |
|
int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT |
|
int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT |
|
int16_t controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input) |
|
int16_t controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input) |
|
|
|
// wind compensation related variables |
|
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller |
|
int16_t wind_comp_roll; // roll angle to compensate for wind |
|
int16_t wind_comp_pitch; // pitch angle to compensate for wind |
|
uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged |
|
int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz |
|
|
|
// final output |
|
int16_t roll; // final roll angle sent to attitude controller |
|
int16_t pitch; // final pitch angle sent to attitude controller |
|
} poshold; |
|
|
|
// poshold_init - initialise PosHold controller |
|
bool Copter::poshold_init(bool ignore_checks) |
|
{ |
|
// fail to initialise PosHold mode if no GPS lock |
|
if (!position_ok() && !ignore_checks) { |
|
return false; |
|
} |
|
|
|
// initialize vertical speeds and acceleration |
|
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max); |
|
pos_control.set_accel_z(g.pilot_accel_z); |
|
|
|
// initialise position and desired velocity |
|
pos_control.set_alt_target(inertial_nav.get_altitude()); |
|
pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z()); |
|
|
|
// initialise lean angles to current attitude |
|
poshold.pilot_roll = 0; |
|
poshold.pilot_pitch = 0; |
|
|
|
// compute brake_gain |
|
poshold.brake_gain = (15.0f * (float)g.poshold_brake_rate + 95.0f) / 100.0f; |
|
|
|
if (ap.land_complete) { |
|
// if landed begin in loiter mode |
|
poshold.roll_mode = POSHOLD_LOITER; |
|
poshold.pitch_mode = POSHOLD_LOITER; |
|
// set target to current position |
|
// only init here as we can switch to PosHold in flight with a velocity <> 0 that will be used as _last_vel in PosControl and never updated again as we inhibit Reset_I |
|
wp_nav.init_loiter_target(); |
|
}else{ |
|
// if not landed start in pilot override to avoid hard twitch |
|
poshold.roll_mode = POSHOLD_PILOT_OVERRIDE; |
|
poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE; |
|
} |
|
|
|
// loiter's I terms should be reset the first time only |
|
poshold.loiter_reset_I = true; |
|
|
|
// initialise wind_comp each time PosHold is switched on |
|
poshold.wind_comp_ef.zero(); |
|
poshold.wind_comp_roll = 0; |
|
poshold.wind_comp_pitch = 0; |
|
poshold.wind_comp_timer = 0; |
|
|
|
return true; |
|
} |
|
|
|
// poshold_run - runs the PosHold controller |
|
// should be called at 100hz or more |
|
void Copter::poshold_run() |
|
{ |
|
float target_roll, target_pitch; // pilot's roll and pitch angle inputs |
|
float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec |
|
float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec |
|
float takeoff_climb_rate = 0.0f; // takeoff induced climb rate |
|
float brake_to_loiter_mix; // mix of brake and loiter controls. 0 = fully brake controls, 1 = fully loiter controls |
|
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls |
|
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls |
|
float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions |
|
const Vector3f& vel = inertial_nav.get_velocity(); |
|
|
|
// initialize vertical speeds and acceleration |
|
pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max); |
|
pos_control.set_accel_z(g.pilot_accel_z); |
|
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately |
|
if(!ap.auto_armed || !motors.get_interlock()) { |
|
wp_nav.init_loiter_target(); |
|
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); |
|
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average); |
|
return; |
|
} |
|
|
|
// process pilot inputs |
|
if (!failsafe.radio) { |
|
// apply SIMPLE mode transform to pilot inputs |
|
update_simple_mode(); |
|
|
|
// get pilot's desired yaw rate |
|
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in); |
|
|
|
// get pilot desired climb rate (for alt-hold mode and take-off) |
|
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in); |
|
target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max); |
|
|
|
// get takeoff adjusted pilot and takeoff climb rates |
|
takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate); |
|
|
|
// check for take-off |
|
if (ap.land_complete && (takeoff_state.running || channel_throttle->control_in > get_takeoff_trigger_throttle())) { |
|
if (!takeoff_state.running) { |
|
takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f)); |
|
} |
|
|
|
// indicate we are taking off |
|
set_land_complete(false); |
|
// clear i term when we're taking off |
|
set_throttle_takeoff(); |
|
} |
|
} |
|
|
|
// relax loiter target if we might be landed |
|
if (ap.land_complete_maybe) { |
|
wp_nav.loiter_soften_for_landing(); |
|
} |
|
|
|
// if landed initialise loiter targets, set throttle to zero and exit |
|
if (ap.land_complete) { |
|
wp_nav.init_loiter_target(); |
|
// move throttle to between minimum and non-takeoff-throttle to keep us on the ground |
|
attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt); |
|
pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average); |
|
return; |
|
}else{ |
|
// convert pilot input to lean angles |
|
get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max); |
|
|
|
// convert inertial nav earth-frame velocities to body-frame |
|
// To-Do: move this to AP_Math (or perhaps we already have a function to do this) |
|
vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw(); |
|
vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw(); |
|
|
|
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw |
|
if (poshold.roll_mode != POSHOLD_LOITER || poshold.pitch_mode != POSHOLD_LOITER) |
|
poshold_get_wind_comp_lean_angles(poshold.wind_comp_roll, poshold.wind_comp_pitch); |
|
|
|
// Roll state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final roll output to the attitude controller |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (poshold.roll_mode) { |
|
|
|
case POSHOLD_PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if (is_zero(target_roll) && (fabsf(poshold.pilot_roll) < 2 * g.poshold_brake_rate)) { |
|
// initialise BRAKE mode |
|
poshold.roll_mode = POSHOLD_BRAKE; // Set brake roll mode |
|
poshold.brake_roll = 0; // initialise braking angle to zero |
|
poshold.brake_angle_max_roll = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
poshold.brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. |
|
poshold.braking_time_updated_roll = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
poshold.roll = poshold.pilot_roll + poshold.wind_comp_roll; |
|
break; |
|
|
|
case POSHOLD_BRAKE: |
|
case POSHOLD_BRAKE_READY_TO_LOITER: |
|
// calculate brake_roll angle to counter-act velocity |
|
poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right); |
|
|
|
// update braking time estimate |
|
if (!poshold.braking_time_updated_roll) { |
|
// check if brake angle is increasing |
|
if (abs(poshold.brake_roll) >= poshold.brake_angle_max_roll) { |
|
poshold.brake_angle_max_roll = abs(poshold.brake_roll); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
poshold.brake_timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_roll))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
poshold.braking_time_updated_roll = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_roll > 50*LOOP_RATE_FACTOR)) { |
|
poshold.brake_timeout_roll = 50*LOOP_RATE_FACTOR; |
|
} |
|
|
|
// reduce braking timer |
|
if (poshold.brake_timeout_roll > 0) { |
|
poshold.brake_timeout_roll--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the roll and pitch mode switch statements |
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
poshold.roll = poshold.brake_roll + poshold.wind_comp_roll; |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
poshold_roll_controller_to_pilot_override(); |
|
} |
|
break; |
|
|
|
case POSHOLD_BRAKE_TO_LOITER: |
|
case POSHOLD_LOITER: |
|
// these modes are combined roll-pitch modes and are handled below |
|
break; |
|
|
|
case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll); |
|
|
|
// count-down loiter to pilot timer |
|
if (poshold.controller_to_pilot_timer_roll > 0) { |
|
poshold.controller_to_pilot_timer_roll--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
poshold.roll_mode = POSHOLD_PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate controller_to_pilot mix ratio |
|
controller_to_pilot_roll_mix = (float)poshold.controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
poshold.roll = poshold_mix_controls(controller_to_pilot_roll_mix, poshold.controller_final_roll, poshold.pilot_roll + poshold.wind_comp_roll); |
|
break; |
|
} |
|
|
|
// Pitch state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final pitch output to the attitude contpitcher |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (poshold.pitch_mode) { |
|
|
|
case POSHOLD_PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if (is_zero(target_pitch) && (fabsf(poshold.pilot_pitch) < 2 * g.poshold_brake_rate)) { |
|
// initialise BRAKE mode |
|
poshold.pitch_mode = POSHOLD_BRAKE; // set brake pitch mode |
|
poshold.brake_pitch = 0; // initialise braking angle to zero |
|
poshold.brake_angle_max_pitch = 0; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
poshold.brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. |
|
poshold.braking_time_updated_pitch = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
poshold.pitch = poshold.pilot_pitch + poshold.wind_comp_pitch; |
|
break; |
|
|
|
case POSHOLD_BRAKE: |
|
case POSHOLD_BRAKE_READY_TO_LOITER: |
|
// calculate brake_pitch angle to counter-act velocity |
|
poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw); |
|
|
|
// update braking time estimate |
|
if (!poshold.braking_time_updated_pitch) { |
|
// check if brake angle is increasing |
|
if (abs(poshold.brake_pitch) >= poshold.brake_angle_max_pitch) { |
|
poshold.brake_angle_max_pitch = abs(poshold.brake_pitch); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
poshold.brake_timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_pitch))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
poshold.braking_time_updated_pitch = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_pitch > 50*LOOP_RATE_FACTOR)) { |
|
poshold.brake_timeout_pitch = 50*LOOP_RATE_FACTOR; |
|
} |
|
|
|
// reduce braking timer |
|
if (poshold.brake_timeout_pitch > 0) { |
|
poshold.brake_timeout_pitch--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the pitch and pitch mode switch statements |
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
poshold.pitch = poshold.brake_pitch + poshold.wind_comp_pitch; |
|
|
|
// check for pilot input |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
poshold_pitch_controller_to_pilot_override(); |
|
} |
|
break; |
|
|
|
case POSHOLD_BRAKE_TO_LOITER: |
|
case POSHOLD_LOITER: |
|
// these modes are combined pitch-pitch modes and are handled below |
|
break; |
|
|
|
case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch); |
|
|
|
// count-down loiter to pilot timer |
|
if (poshold.controller_to_pilot_timer_pitch > 0) { |
|
poshold.controller_to_pilot_timer_pitch--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate controller_to_pilot mix ratio |
|
controller_to_pilot_pitch_mix = (float)poshold.controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
poshold.pitch = poshold_mix_controls(controller_to_pilot_pitch_mix, poshold.controller_final_pitch, poshold.pilot_pitch + poshold.wind_comp_pitch); |
|
break; |
|
} |
|
|
|
// |
|
// Shared roll & pitch states (POSHOLD_BRAKE_TO_LOITER and POSHOLD_LOITER) |
|
// |
|
|
|
// switch into LOITER mode when both roll and pitch are ready |
|
if (poshold.roll_mode == POSHOLD_BRAKE_READY_TO_LOITER && poshold.pitch_mode == POSHOLD_BRAKE_READY_TO_LOITER) { |
|
poshold.roll_mode = POSHOLD_BRAKE_TO_LOITER; |
|
poshold.pitch_mode = POSHOLD_BRAKE_TO_LOITER; |
|
poshold.brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER; |
|
// init loiter controller |
|
wp_nav.init_loiter_target(inertial_nav.get_position(), poshold.loiter_reset_I); // (false) to avoid I_term reset. In original code, velocity(0,0,0) was used instead of current velocity: wp_nav.init_loiter_target(inertial_nav.get_position(), Vector3f(0,0,0)); |
|
// at this stage, we are going to run update_loiter that will reset I_term once. From now, we ensure next time that we will enter loiter and update it, I_term won't be reset anymore |
|
poshold.loiter_reset_I = false; |
|
// set delay to start of wind compensation estimate updates |
|
poshold.wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER; |
|
} |
|
|
|
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes |
|
if (poshold.roll_mode == POSHOLD_BRAKE_TO_LOITER || poshold.roll_mode == POSHOLD_LOITER) { |
|
|
|
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states) |
|
poshold.pitch_mode = poshold.roll_mode; |
|
|
|
// handle combined roll+pitch mode |
|
switch (poshold.roll_mode) { |
|
case POSHOLD_BRAKE_TO_LOITER: |
|
// reduce brake_to_loiter timer |
|
if (poshold.brake_to_loiter_timer > 0) { |
|
poshold.brake_to_loiter_timer--; |
|
} else { |
|
// progress to full loiter on next iteration |
|
poshold.roll_mode = POSHOLD_LOITER; |
|
poshold.pitch_mode = POSHOLD_LOITER; |
|
} |
|
|
|
// calculate percentage mix of loiter and brake control |
|
brake_to_loiter_mix = (float)poshold.brake_to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER; |
|
|
|
// calculate brake_roll and pitch angles to counter-act velocity |
|
poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right); |
|
poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw); |
|
|
|
// run loiter controller |
|
wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler); |
|
|
|
// calculate final roll and pitch output by mixing loiter and brake controls |
|
poshold.roll = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_roll + poshold.wind_comp_roll, wp_nav.get_roll()); |
|
poshold.pitch = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_pitch + poshold.wind_comp_pitch, wp_nav.get_pitch()); |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) { |
|
// if roll input switch to pilot override for roll |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
poshold_roll_controller_to_pilot_override(); |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
// no need to reset poshold.brake_pitch here as wind comp has not been updated since last brake_pitch computation |
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
poshold_pitch_controller_to_pilot_override(); |
|
if (is_zero(target_roll)) { |
|
// switch roll-mode to brake (but ready to go back to loiter anytime) |
|
// no need to reset poshold.brake_roll here as wind comp has not been updated since last brake_roll computation |
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case POSHOLD_LOITER: |
|
// run loiter controller |
|
wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler); |
|
|
|
// set roll angle based on loiter controller outputs |
|
poshold.roll = wp_nav.get_roll(); |
|
poshold.pitch = wp_nav.get_pitch(); |
|
|
|
// update wind compensation estimate |
|
poshold_update_wind_comp_estimate(); |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) { |
|
// if roll input switch to pilot override for roll |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
poshold_roll_controller_to_pilot_override(); |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
// reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle |
|
poshold.brake_pitch = 0; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
poshold_pitch_controller_to_pilot_override(); |
|
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time) |
|
if (is_zero(target_roll)) { |
|
poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER; |
|
poshold.brake_roll = 0; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
default: |
|
// do nothing for uncombined roll and pitch modes |
|
break; |
|
} |
|
} |
|
|
|
// constrain target pitch/roll angles |
|
poshold.roll = constrain_int16(poshold.roll, -aparm.angle_max, aparm.angle_max); |
|
poshold.pitch = constrain_int16(poshold.pitch, -aparm.angle_max, aparm.angle_max); |
|
|
|
// update attitude controller targets |
|
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(poshold.roll, poshold.pitch, target_yaw_rate); |
|
|
|
// throttle control |
|
if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) { |
|
// if sonar is ok, use surface tracking |
|
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt); |
|
} |
|
// update altitude target and call position controller |
|
pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false); |
|
pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt); |
|
pos_control.update_z_controller(); |
|
} |
|
} |
|
|
|
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received |
|
void Copter::poshold_update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw) |
|
{ |
|
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle |
|
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (fabsf(lean_angle_raw) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE)) { |
|
lean_angle_filtered = lean_angle_raw; |
|
} else { |
|
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease |
|
if (lean_angle_filtered > 0) { |
|
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster). |
|
lean_angle_filtered -= MAX((float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR)); |
|
// do not let the filtered angle fall below the pilot's input lean angle. |
|
// the above line pulls the filtered angle down and the below line acts as a catch |
|
lean_angle_filtered = MAX(lean_angle_filtered, lean_angle_raw); |
|
}else{ |
|
lean_angle_filtered += MAX(-(float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR)); |
|
lean_angle_filtered = MIN(lean_angle_filtered, lean_angle_raw); |
|
} |
|
} |
|
} |
|
|
|
// poshold_mix_controls - mixes two controls based on the mix_ratio |
|
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly |
|
int16_t Copter::poshold_mix_controls(float mix_ratio, int16_t first_control, int16_t second_control) |
|
{ |
|
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f); |
|
return (int16_t)((mix_ratio * first_control) + ((1.0f-mix_ratio)*second_control)); |
|
} |
|
|
|
// poshold_update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain |
|
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max |
|
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity) |
|
void Copter::poshold_update_brake_angle_from_velocity(int16_t &brake_angle, float velocity) |
|
{ |
|
float lean_angle; |
|
int16_t brake_rate = g.poshold_brake_rate; |
|
|
|
brake_rate /= 4; |
|
if (brake_rate <= 0) { |
|
brake_rate = 1; |
|
} |
|
|
|
// calculate velocity-only based lean angle |
|
if (velocity >= 0) { |
|
lean_angle = -poshold.brake_gain * velocity * (1.0f+500.0f/(velocity+60.0f)); |
|
} else { |
|
lean_angle = -poshold.brake_gain * velocity * (1.0f+500.0f/(-velocity+60.0f)); |
|
} |
|
|
|
// do not let lean_angle be too far from brake_angle |
|
brake_angle = constrain_int16((int16_t)lean_angle, brake_angle - brake_rate, brake_angle + brake_rate); |
|
|
|
// constrain final brake_angle |
|
brake_angle = constrain_int16(brake_angle, -g.poshold_brake_angle_max, g.poshold_brake_angle_max); |
|
} |
|
|
|
// poshold_update_wind_comp_estimate - updates wind compensation estimate |
|
// should be called at the maximum loop rate when loiter is engaged |
|
void Copter::poshold_update_wind_comp_estimate() |
|
{ |
|
// check wind estimate start has not been delayed |
|
if (poshold.wind_comp_start_timer > 0) { |
|
poshold.wind_comp_start_timer--; |
|
return; |
|
} |
|
|
|
// check horizontal velocity is low |
|
if (inertial_nav.get_velocity_xy() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX) { |
|
return; |
|
} |
|
|
|
// get position controller accel target |
|
// To-Do: clean this up by using accessor in loiter controller (or move entire PosHold controller to a library shared with loiter) |
|
const Vector3f& accel_target = pos_control.get_accel_target(); |
|
|
|
// update wind compensation in earth-frame lean angles |
|
if (is_zero(poshold.wind_comp_ef.x)) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
poshold.wind_comp_ef.x = accel_target.x; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
poshold.wind_comp_ef.x = (1.0f-TC_WIND_COMP)*poshold.wind_comp_ef.x + TC_WIND_COMP*accel_target.x; |
|
} |
|
if (is_zero(poshold.wind_comp_ef.y)) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
poshold.wind_comp_ef.y = accel_target.y; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
poshold.wind_comp_ef.y = (1.0f-TC_WIND_COMP)*poshold.wind_comp_ef.y + TC_WIND_COMP*accel_target.y; |
|
} |
|
} |
|
|
|
// poshold_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles |
|
// should be called at the maximum loop rate |
|
void Copter::poshold_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle) |
|
{ |
|
// reduce rate to 10hz |
|
poshold.wind_comp_timer++; |
|
if (poshold.wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ) { |
|
return; |
|
} |
|
poshold.wind_comp_timer = 0; |
|
|
|
// convert earth frame desired accelerations to body frame roll and pitch lean angles |
|
roll_angle = atanf((-poshold.wind_comp_ef.x*ahrs.sin_yaw() + poshold.wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI_F); |
|
pitch_angle = atanf(-(poshold.wind_comp_ef.x*ahrs.cos_yaw() + poshold.wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI_F); |
|
} |
|
|
|
// poshold_roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis |
|
void Copter::poshold_roll_controller_to_pilot_override() |
|
{ |
|
poshold.roll_mode = POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE; |
|
poshold.controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value |
|
poshold.pilot_roll = 0; |
|
// store final controller output for mixing with pilot input |
|
poshold.controller_final_roll = poshold.roll; |
|
} |
|
|
|
// poshold_pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis |
|
void Copter::poshold_pitch_controller_to_pilot_override() |
|
{ |
|
poshold.pitch_mode = POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE; |
|
poshold.controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value |
|
poshold.pilot_pitch = 0; |
|
// store final loiter outputs for mixing with pilot input |
|
poshold.controller_final_pitch = poshold.pitch; |
|
} |
|
|
|
#endif // POSHOLD_ENABLED == ENABLED
|
|
|