You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1167 lines
34 KiB
1167 lines
34 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Functions called from the setup menu |
|
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_range (uint8_t argc, const Menu::arg *argv); |
|
//static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv); |
|
|
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv); |
|
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
// Command/function table for the setup menu |
|
const struct Menu::command setup_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"erase", setup_erase}, |
|
{"reset", setup_factory}, |
|
{"radio", setup_radio}, |
|
{"frame", setup_frame}, |
|
{"motors", setup_motors}, |
|
{"level", setup_accel}, |
|
{"accel", setup_accel_scale}, |
|
{"modes", setup_flightmodes}, |
|
{"battery", setup_batt_monitor}, |
|
{"sonar", setup_sonar}, |
|
{"compass", setup_compass}, |
|
{"tune", setup_tune}, |
|
{"range", setup_range}, |
|
// {"offsets", setup_mag_offset}, |
|
{"declination", setup_declination}, |
|
{"optflow", setup_optflow}, |
|
#if FRAME_CONFIG == HELI_FRAME |
|
{"heli", setup_heli}, |
|
{"gyro", setup_gyro}, |
|
#endif |
|
{"show", setup_show} |
|
}; |
|
|
|
// Create the setup menu object. |
|
MENU(setup_menu, "setup", setup_menu_commands); |
|
|
|
// Called from the top-level menu to run the setup menu. |
|
static int8_t |
|
setup_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
// Give the user some guidance |
|
cliSerial->printf_P(PSTR("Setup Mode\n\n\n")); |
|
//"\n" |
|
//"IMPORTANT: if you have not previously set this system up, use the\n" |
|
//"'reset' command to initialize the EEPROM to sensible default values\n" |
|
//"and then the 'radio' command to configure for your radio.\n" |
|
//"\n")); |
|
|
|
if(g.rc_1.radio_min >= 1300) { |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!")); |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n")); |
|
} |
|
|
|
// Run the setup menu. When the menu exits, we will return to the main menu. |
|
setup_menu.run(); |
|
return 0; |
|
} |
|
|
|
// Print the current configuration. |
|
// Called by the setup menu 'show' command. |
|
static int8_t |
|
setup_show(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
// clear the area |
|
print_blanks(8); |
|
|
|
report_version(); |
|
report_radio(); |
|
report_frame(); |
|
report_batt_monitor(); |
|
report_sonar(); |
|
//report_gains(); |
|
//report_xtrack(); |
|
//report_throttle(); |
|
report_flight_modes(); |
|
report_ins(); |
|
report_compass(); |
|
report_optflow(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
report_heli(); |
|
report_gyro(); |
|
#endif |
|
|
|
AP_Param::show_all(); |
|
|
|
return(0); |
|
} |
|
|
|
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). |
|
// Called by the setup menu 'factoryreset' command. |
|
static int8_t |
|
setup_factory(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
int16_t c; |
|
|
|
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n")); |
|
|
|
do { |
|
c = cliSerial->read(); |
|
} while (-1 == c); |
|
|
|
if (('y' != c) && ('Y' != c)) |
|
return(-1); |
|
|
|
AP_Param::erase_all(); |
|
cliSerial->printf_P(PSTR("\nReboot APM")); |
|
|
|
delay(1000); |
|
//default_gains(); |
|
|
|
for (;; ) { |
|
} |
|
// note, cannot actually return here |
|
return(0); |
|
} |
|
|
|
// Perform radio setup. |
|
// Called by the setup menu 'radio' command. |
|
static int8_t |
|
setup_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->println_P(PSTR("\n\nRadio Setup:")); |
|
uint8_t i; |
|
|
|
for(i = 0; i < 100; i++) { |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
if(g.rc_1.radio_in < 500) { |
|
while(1) { |
|
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors.")); |
|
delay(1000); |
|
// stop here |
|
} |
|
} |
|
|
|
g.rc_1.radio_min = g.rc_1.radio_in; |
|
g.rc_2.radio_min = g.rc_2.radio_in; |
|
g.rc_3.radio_min = g.rc_3.radio_in; |
|
g.rc_4.radio_min = g.rc_4.radio_in; |
|
g.rc_5.radio_min = g.rc_5.radio_in; |
|
g.rc_6.radio_min = g.rc_6.radio_in; |
|
g.rc_7.radio_min = g.rc_7.radio_in; |
|
g.rc_8.radio_min = g.rc_8.radio_in; |
|
|
|
g.rc_1.radio_max = g.rc_1.radio_in; |
|
g.rc_2.radio_max = g.rc_2.radio_in; |
|
g.rc_3.radio_max = g.rc_3.radio_in; |
|
g.rc_4.radio_max = g.rc_4.radio_in; |
|
g.rc_5.radio_max = g.rc_5.radio_in; |
|
g.rc_6.radio_max = g.rc_6.radio_in; |
|
g.rc_7.radio_max = g.rc_7.radio_in; |
|
g.rc_8.radio_max = g.rc_8.radio_in; |
|
|
|
g.rc_1.radio_trim = g.rc_1.radio_in; |
|
g.rc_2.radio_trim = g.rc_2.radio_in; |
|
g.rc_4.radio_trim = g.rc_4.radio_in; |
|
// 3 is not trimed |
|
g.rc_5.radio_trim = 1500; |
|
g.rc_6.radio_trim = 1500; |
|
g.rc_7.radio_trim = 1500; |
|
g.rc_8.radio_trim = 1500; |
|
|
|
|
|
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: ")); |
|
while(1) { |
|
|
|
delay(20); |
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
g.rc_1.update_min_max(); |
|
g.rc_2.update_min_max(); |
|
g.rc_3.update_min_max(); |
|
g.rc_4.update_min_max(); |
|
g.rc_5.update_min_max(); |
|
g.rc_6.update_min_max(); |
|
g.rc_7.update_min_max(); |
|
g.rc_8.update_min_max(); |
|
|
|
if(cliSerial->available() > 0) { |
|
delay(20); |
|
cliSerial->flush(); |
|
|
|
g.rc_1.save_eeprom(); |
|
g.rc_2.save_eeprom(); |
|
g.rc_3.save_eeprom(); |
|
g.rc_4.save_eeprom(); |
|
g.rc_5.save_eeprom(); |
|
g.rc_6.save_eeprom(); |
|
g.rc_7.save_eeprom(); |
|
g.rc_8.save_eeprom(); |
|
|
|
print_done(); |
|
break; |
|
} |
|
} |
|
report_radio(); |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
setup_motors(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR( |
|
"Now connect the main lipo and follow the instruction on the wiki for your frame setup.\n" |
|
"For security remember to disconnect the main lipo after the test, then hit any key to exit.\n" |
|
"Any key to exit.\n")); |
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
motors.output_test(); |
|
if(cliSerial->available() > 0) { |
|
g.esc_calibrate.set_and_save(0); |
|
return(0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
setup_accel(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
delay, flash_leds, &timer_scheduler); |
|
ins.init_accel(delay, flash_leds); |
|
report_ins(); |
|
return(0); |
|
} |
|
|
|
/* |
|
handle full accelerometer calibration via user dialog |
|
*/ |
|
|
|
static void setup_printf_P(const prog_char_t *fmt, ...) |
|
{ |
|
va_list arg_list; |
|
va_start(arg_list, fmt); |
|
cliSerial->vprintf_P(fmt, arg_list); |
|
va_end(arg_list); |
|
} |
|
|
|
static void setup_wait_key(void) |
|
{ |
|
// wait for user input |
|
while (!cliSerial->available()) { |
|
delay(20); |
|
} |
|
// clear input buffer |
|
while( cliSerial->available() ) { |
|
cliSerial->read(); |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
setup_accel_scale(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->println_P(PSTR("Initialising gyros")); |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate, |
|
delay, flash_leds, &timer_scheduler); |
|
ins.calibrate_accel(delay, flash_leds, setup_printf_P, setup_wait_key); |
|
report_ins(); |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
setup_frame(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("x"))) { |
|
g.frame_orientation.set_and_save(X_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("p"))) { |
|
g.frame_orientation.set_and_save(PLUS_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("+"))) { |
|
g.frame_orientation.set_and_save(PLUS_FRAME); |
|
} else if (!strcmp_P(argv[1].str, PSTR("v"))) { |
|
g.frame_orientation.set_and_save(V_FRAME); |
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n")); |
|
report_frame(); |
|
return 0; |
|
} |
|
|
|
report_frame(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_flightmodes(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
byte _switchPosition = 0; |
|
byte _oldSwitchPosition = 0; |
|
int8_t mode = 0; |
|
|
|
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n")); |
|
print_hit_enter(); |
|
|
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
_switchPosition = readSwitch(); |
|
|
|
|
|
// look for control switch change |
|
if (_oldSwitchPosition != _switchPosition) { |
|
|
|
mode = flight_modes[_switchPosition]; |
|
mode = constrain(mode, 0, NUM_MODES-1); |
|
|
|
// update the user |
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); |
|
|
|
// Remember switch position |
|
_oldSwitchPosition = _switchPosition; |
|
} |
|
|
|
// look for stick input |
|
if (abs(g.rc_1.control_in) > 3000) { |
|
mode++; |
|
if(mode >= NUM_MODES) |
|
mode = 0; |
|
|
|
// save new mode |
|
flight_modes[_switchPosition] = mode; |
|
|
|
// print new mode |
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); |
|
delay(500); |
|
} |
|
|
|
// look for stick input |
|
if (g.rc_4.control_in > 3000) { |
|
g.simple_modes |= (1<<_switchPosition); |
|
// print new mode |
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); |
|
delay(500); |
|
} |
|
|
|
// look for stick input |
|
if (g.rc_4.control_in < -3000) { |
|
g.simple_modes &= ~(1<<_switchPosition); |
|
// print new mode |
|
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition))); |
|
delay(500); |
|
} |
|
|
|
// escape hatch |
|
if(cliSerial->available() > 0) { |
|
for (mode = 0; mode < 6; mode++) |
|
flight_modes[mode].save(); |
|
|
|
g.simple_modes.save(); |
|
print_done(); |
|
report_flight_modes(); |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
setup_declination(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
compass.set_declination(radians(argv[1].f)); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_tune(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
g.radio_tuning.set_and_save(argv[1].i); |
|
//g.radio_tuning_high.set_and_save(1000); |
|
//g.radio_tuning_low.set_and_save(0); |
|
report_tuning(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_range(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n")); |
|
|
|
g.radio_tuning_low.set_and_save(argv[1].i); |
|
g.radio_tuning_high.set_and_save(argv[2].i); |
|
report_tuning(); |
|
return 0; |
|
} |
|
|
|
|
|
|
|
static int8_t |
|
setup_erase(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
zero_eeprom(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_compass(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.compass_enabled.set_and_save(true); |
|
init_compass(); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
clear_offsets(); |
|
g.compass_enabled.set_and_save(false); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on,off]\n")); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
g.compass_enabled.save(); |
|
report_compass(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_batt_monitor(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.battery_monitoring.set_and_save(0); |
|
|
|
} else if(argv[1].i > 0 && argv[1].i <= 4) { |
|
g.battery_monitoring.set_and_save(argv[1].i); |
|
|
|
} else { |
|
cliSerial->printf_P(PSTR("\nOp: off, 3-4")); |
|
} |
|
|
|
report_batt_monitor(); |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
setup_sonar(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.sonar_enabled.set_and_save(true); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.sonar_enabled.set_and_save(false); |
|
|
|
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) { |
|
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on |
|
g.sonar_type.set_and_save(argv[1].i); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n")); |
|
report_sonar(); |
|
return 0; |
|
} |
|
|
|
report_sonar(); |
|
return 0; |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
|
|
// Perform heli setup. |
|
// Called by the setup menu 'radio' command. |
|
static int8_t |
|
setup_heli(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
|
|
uint8_t active_servo = 0; |
|
int16_t value = 0; |
|
int16_t temp; |
|
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max |
|
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0; |
|
|
|
// initialise swash plate |
|
motors.init_swash(); |
|
|
|
// source swash plate movements directly from radio |
|
motors.servo_manual = true; |
|
|
|
// display initial settings |
|
report_heli(); |
|
|
|
// display help |
|
cliSerial->printf_P(PSTR("Instructions:")); |
|
print_divider(); |
|
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n")); |
|
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n")); |
|
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n")); |
|
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n")); |
|
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n")); |
|
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n")); |
|
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n")); |
|
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n")); |
|
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n")); |
|
cliSerial->printf_P(PSTR("\tx\t\texit & save\n")); |
|
|
|
// start capturing |
|
while( value != 'x' ) { |
|
|
|
// read radio although we don't use it yet |
|
read_radio(); |
|
|
|
// allow swash plate to move |
|
motors.output_armed(); |
|
|
|
// record min/max |
|
if( state == 1 ) { |
|
if( abs(g.rc_1.control_in) > max_roll ) |
|
max_roll = abs(g.rc_1.control_in); |
|
if( abs(g.rc_2.control_in) > max_pitch ) |
|
max_pitch = abs(g.rc_2.control_in); |
|
if( g.rc_3.radio_out < min_collective ) |
|
min_collective = g.rc_3.radio_out; |
|
if( g.rc_3.radio_out > max_collective ) |
|
max_collective = g.rc_3.radio_out; |
|
min_tail = min(g.rc_4.radio_out, min_tail); |
|
max_tail = max(g.rc_4.radio_out, max_tail); |
|
} |
|
|
|
if( cliSerial->available() ) { |
|
value = cliSerial->read(); |
|
|
|
// process the user's input |
|
switch( value ) { |
|
case '1': |
|
active_servo = CH_1; |
|
break; |
|
case '2': |
|
active_servo = CH_2; |
|
break; |
|
case '3': |
|
active_servo = CH_3; |
|
break; |
|
case '4': |
|
active_servo = CH_4; |
|
break; |
|
case 'a': |
|
case 'A': |
|
heli_get_servo(active_servo)->radio_trim += 10; |
|
break; |
|
case 'c': |
|
case 'C': |
|
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) { |
|
motors.collective_mid = g.rc_3.radio_out; |
|
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid); |
|
} |
|
break; |
|
case 'd': |
|
case 'D': |
|
// display settings |
|
report_heli(); |
|
break; |
|
case 'm': |
|
case 'M': |
|
if( state == 0 ) { |
|
state = 1; // switch to capture min/max mode |
|
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n")); |
|
|
|
// reset servo ranges |
|
motors.roll_max = motors.pitch_max = 4500; |
|
motors.collective_min = 1000; |
|
motors.collective_max = 2000; |
|
motors._servo_4->radio_min = 1000; |
|
motors._servo_4->radio_max = 2000; |
|
|
|
// set sensible values in temp variables |
|
max_roll = abs(g.rc_1.control_in); |
|
max_pitch = abs(g.rc_2.control_in); |
|
min_collective = 2000; |
|
max_collective = 1000; |
|
min_tail = max_tail = abs(g.rc_4.radio_out); |
|
}else{ |
|
state = 0; // switch back to normal mode |
|
// double check values aren't totally terrible |
|
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 ) |
|
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail); |
|
else{ |
|
motors.roll_max = max_roll; |
|
motors.pitch_max = max_pitch; |
|
motors.collective_min = min_collective; |
|
motors.collective_max = max_collective; |
|
motors._servo_4->radio_min = min_tail; |
|
motors._servo_4->radio_max = max_tail; |
|
|
|
// reinitialise swash |
|
motors.init_swash(); |
|
|
|
// display settings |
|
report_heli(); |
|
} |
|
} |
|
break; |
|
case 'p': |
|
case 'P': |
|
temp = read_num_from_serial(); |
|
if( temp >= -360 && temp <= 360 ) { |
|
if( active_servo == CH_1 ) |
|
motors.servo1_pos = temp; |
|
if( active_servo == CH_2 ) |
|
motors.servo2_pos = temp; |
|
if( active_servo == CH_3 ) |
|
motors.servo3_pos = temp; |
|
motors.init_swash(); |
|
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp); |
|
} |
|
break; |
|
case 'r': |
|
case 'R': |
|
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse()); |
|
break; |
|
case 't': |
|
case 'T': |
|
temp = read_num_from_serial(); |
|
if( temp > 1000 ) |
|
temp -= 1500; |
|
if( temp > -500 && temp < 500 ) { |
|
heli_get_servo(active_servo)->radio_trim = 1500 + temp; |
|
motors.init_swash(); |
|
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp); |
|
} |
|
break; |
|
case 'u': |
|
case 'U': |
|
temp = 0; |
|
// delay up to 2 seconds for servo type from user |
|
while( !cliSerial->available() && temp < 20 ) { |
|
temp++; |
|
delay(100); |
|
} |
|
if( cliSerial->available() ) { |
|
value = cliSerial->read(); |
|
if( value == 'a' || value == 'A' ) { |
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); |
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately |
|
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed); |
|
} |
|
if( value == 'd' || value == 'D' ) { |
|
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS); |
|
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately |
|
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed); |
|
} |
|
} |
|
break; |
|
case 'z': |
|
case 'Z': |
|
heli_get_servo(active_servo)->radio_trim -= 10; |
|
break; |
|
} |
|
} |
|
|
|
delay(20); |
|
} |
|
|
|
// display final settings |
|
report_heli(); |
|
|
|
// save to eeprom |
|
motors._servo_1->save_eeprom(); |
|
motors._servo_2->save_eeprom(); |
|
motors._servo_3->save_eeprom(); |
|
motors._servo_4->save_eeprom(); |
|
motors.servo1_pos.save(); |
|
motors.servo2_pos.save(); |
|
motors.servo3_pos.save(); |
|
motors.roll_max.save(); |
|
motors.pitch_max.save(); |
|
motors.collective_min.save(); |
|
motors.collective_max.save(); |
|
motors.collective_mid.save(); |
|
|
|
// return swash plate movements to attitude controller |
|
motors.servo_manual = false; |
|
|
|
return(0); |
|
} |
|
|
|
// setup for external tail gyro (for heli only) |
|
static int8_t |
|
setup_gyro(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
motors.ext_gyro_enabled.set_and_save(true); |
|
|
|
// optionally capture the gain |
|
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) { |
|
motors.ext_gyro_gain = argv[2].i; |
|
motors.ext_gyro_gain.save(); |
|
} |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
motors.ext_gyro_enabled.set_and_save(false); |
|
|
|
// capture gain if user simply provides a number |
|
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) { |
|
motors.ext_gyro_enabled.set_and_save(true); |
|
motors.ext_gyro_gain = argv[1].i; |
|
motors.ext_gyro_gain.save(); |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n")); |
|
} |
|
|
|
report_gyro(); |
|
return 0; |
|
} |
|
|
|
#endif // FRAME_CONFIG == HELI |
|
|
|
static void clear_offsets() |
|
{ |
|
Vector3f _offsets(0.0,0.0,0.0); |
|
compass.set_offsets(_offsets); |
|
compass.save_offsets(); |
|
} |
|
|
|
static int8_t |
|
setup_optflow(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
#if OPTFLOW == ENABLED |
|
if (!strcmp_P(argv[1].str, PSTR("on"))) { |
|
g.optflow_enabled = true; |
|
init_optflow(); |
|
|
|
} else if (!strcmp_P(argv[1].str, PSTR("off"))) { |
|
g.optflow_enabled = false; |
|
|
|
}else{ |
|
cliSerial->printf_P(PSTR("\nOp:[on, off]\n")); |
|
report_optflow(); |
|
return 0; |
|
} |
|
|
|
g.optflow_enabled.save(); |
|
report_optflow(); |
|
#endif // OPTFLOW == ENABLED |
|
return 0; |
|
} |
|
|
|
|
|
|
|
/***************************************************************************/ |
|
// CLI reports |
|
/***************************************************************************/ |
|
|
|
static void report_batt_monitor() |
|
{ |
|
cliSerial->printf_P(PSTR("\nBatt Mon:\n")); |
|
print_divider(); |
|
if(g.battery_monitoring == 0) print_enabled(false); |
|
if(g.battery_monitoring == 3) cliSerial->printf_P(PSTR("volts")); |
|
if(g.battery_monitoring == 4) cliSerial->printf_P(PSTR("volts and cur")); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_wp(byte index = 255) |
|
{ |
|
if(index == 255) { |
|
for(byte i = 0; i < g.command_total; i++) { |
|
struct Location temp = get_cmd_with_index(i); |
|
print_wp(&temp, i); |
|
} |
|
}else{ |
|
struct Location temp = get_cmd_with_index(index); |
|
print_wp(&temp, index); |
|
} |
|
} |
|
|
|
static void report_sonar() |
|
{ |
|
cliSerial->printf_P(PSTR("Sonar\n")); |
|
print_divider(); |
|
print_enabled(g.sonar_enabled.get()); |
|
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_frame() |
|
{ |
|
cliSerial->printf_P(PSTR("Frame\n")); |
|
print_divider(); |
|
|
|
#if FRAME_CONFIG == QUAD_FRAME |
|
cliSerial->printf_P(PSTR("Quad frame\n")); |
|
#elif FRAME_CONFIG == TRI_FRAME |
|
cliSerial->printf_P(PSTR("TRI frame\n")); |
|
#elif FRAME_CONFIG == HEXA_FRAME |
|
cliSerial->printf_P(PSTR("Hexa frame\n")); |
|
#elif FRAME_CONFIG == Y6_FRAME |
|
cliSerial->printf_P(PSTR("Y6 frame\n")); |
|
#elif FRAME_CONFIG == OCTA_FRAME |
|
cliSerial->printf_P(PSTR("Octa frame\n")); |
|
#elif FRAME_CONFIG == HELI_FRAME |
|
cliSerial->printf_P(PSTR("Heli frame\n")); |
|
#endif |
|
|
|
#if FRAME_CONFIG != HELI_FRAME |
|
if(g.frame_orientation == X_FRAME) |
|
cliSerial->printf_P(PSTR("X mode\n")); |
|
else if(g.frame_orientation == PLUS_FRAME) |
|
cliSerial->printf_P(PSTR("+ mode\n")); |
|
else if(g.frame_orientation == V_FRAME) |
|
cliSerial->printf_P(PSTR("V mode\n")); |
|
#endif |
|
|
|
print_blanks(2); |
|
} |
|
|
|
static void report_radio() |
|
{ |
|
cliSerial->printf_P(PSTR("Radio\n")); |
|
print_divider(); |
|
// radio |
|
print_radio_values(); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_ins() |
|
{ |
|
cliSerial->printf_P(PSTR("INS\n")); |
|
print_divider(); |
|
|
|
print_gyro_offsets(); |
|
print_accel_offsets_and_scaling(); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_compass() |
|
{ |
|
cliSerial->printf_P(PSTR("Compass\n")); |
|
print_divider(); |
|
|
|
print_enabled(g.compass_enabled); |
|
|
|
// mag declination |
|
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"), |
|
degrees(compass.get_declination())); |
|
|
|
Vector3f offsets = compass.get_offsets(); |
|
|
|
// mag offsets |
|
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f"), |
|
offsets.x, |
|
offsets.y, |
|
offsets.z); |
|
print_blanks(2); |
|
} |
|
|
|
static void report_flight_modes() |
|
{ |
|
cliSerial->printf_P(PSTR("Flight modes\n")); |
|
print_divider(); |
|
|
|
for(int16_t i = 0; i < 6; i++ ) { |
|
print_switch(i, flight_modes[i], (g.simple_modes & (1<<i))); |
|
} |
|
print_blanks(2); |
|
} |
|
|
|
void report_optflow() |
|
{ |
|
#if OPTFLOW == ENABLED |
|
cliSerial->printf_P(PSTR("OptFlow\n")); |
|
print_divider(); |
|
|
|
print_enabled(g.optflow_enabled); |
|
|
|
// field of view |
|
//cliSerial->printf_P(PSTR("FOV: %4.0f\n"), |
|
// degrees(g.optflow_fov)); |
|
|
|
print_blanks(2); |
|
#endif // OPTFLOW == ENABLED |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
static void report_heli() |
|
{ |
|
cliSerial->printf_P(PSTR("Heli\n")); |
|
print_divider(); |
|
|
|
// main servo settings |
|
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n")); |
|
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse()); |
|
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse()); |
|
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse()); |
|
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse()); |
|
|
|
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max); |
|
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max); |
|
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max); |
|
|
|
// calculate and print servo rate |
|
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed); |
|
|
|
print_blanks(2); |
|
} |
|
|
|
static void report_gyro() |
|
{ |
|
|
|
cliSerial->printf_P(PSTR("Gyro:\n")); |
|
print_divider(); |
|
|
|
print_enabled( motors.ext_gyro_enabled ); |
|
if( motors.ext_gyro_enabled ) |
|
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain); |
|
|
|
print_blanks(2); |
|
} |
|
|
|
#endif // FRAME_CONFIG == HELI_FRAME |
|
|
|
/***************************************************************************/ |
|
// CLI utilities |
|
/***************************************************************************/ |
|
|
|
/*static void |
|
* print_PID(PI * pid) |
|
* { |
|
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"), |
|
* pid->kP(), |
|
* pid->kI(), |
|
* (long)pid->imax()); |
|
* } |
|
*/ |
|
|
|
static void |
|
print_radio_values() |
|
{ |
|
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max); |
|
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max); |
|
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max); |
|
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max); |
|
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max); |
|
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max); |
|
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max); |
|
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max); |
|
} |
|
|
|
static void |
|
print_switch(byte p, byte m, bool b) |
|
{ |
|
cliSerial->printf_P(PSTR("Pos %d:\t"),p); |
|
print_flight_mode(m); |
|
cliSerial->printf_P(PSTR(",\t\tSimple: ")); |
|
if(b) |
|
cliSerial->printf_P(PSTR("ON\n")); |
|
else |
|
cliSerial->printf_P(PSTR("OFF\n")); |
|
} |
|
|
|
static void |
|
print_done() |
|
{ |
|
cliSerial->printf_P(PSTR("\nSaved\n")); |
|
} |
|
|
|
|
|
static void zero_eeprom(void) |
|
{ |
|
byte b = 0; |
|
|
|
cliSerial->printf_P(PSTR("\nErasing EEPROM\n")); |
|
|
|
for (uintptr_t i = 0; i < EEPROM_MAX_ADDR; i++) { |
|
eeprom_write_byte((uint8_t *) i, b); |
|
} |
|
|
|
cliSerial->printf_P(PSTR("done\n")); |
|
} |
|
|
|
static void |
|
print_accel_offsets_and_scaling(void) |
|
{ |
|
Vector3f accel_offsets = ins.get_accel_offsets(); |
|
Vector3f accel_scale = ins.get_accel_scale(); |
|
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\tA_scale: %4.2f, %4.2f, %4.2f\n"), |
|
(float)accel_offsets.x, // Pitch |
|
(float)accel_offsets.y, // Roll |
|
(float)accel_offsets.z, // YAW |
|
(float)accel_scale.x, // Pitch |
|
(float)accel_scale.y, // Roll |
|
(float)accel_scale.z); // YAW |
|
} |
|
|
|
static void |
|
print_gyro_offsets(void) |
|
{ |
|
Vector3f gyro_offsets = ins.get_gyro_offsets(); |
|
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"), |
|
(float)gyro_offsets.x, |
|
(float)gyro_offsets.y, |
|
(float)gyro_offsets.z); |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
|
|
static RC_Channel * |
|
heli_get_servo(int16_t servo_num){ |
|
if( servo_num == CH_1 ) |
|
return motors._servo_1; |
|
if( servo_num == CH_2 ) |
|
return motors._servo_2; |
|
if( servo_num == CH_3 ) |
|
return motors._servo_3; |
|
if( servo_num == CH_4 ) |
|
return motors._servo_4; |
|
return NULL; |
|
} |
|
|
|
// Used to read integer values from the serial port |
|
static int16_t read_num_from_serial() { |
|
byte index = 0; |
|
byte timeout = 0; |
|
char data[5] = ""; |
|
|
|
do { |
|
if (cliSerial->available() == 0) { |
|
delay(10); |
|
timeout++; |
|
}else{ |
|
data[index] = cliSerial->read(); |
|
timeout = 0; |
|
index++; |
|
} |
|
} while (timeout < 5 && index < 5); |
|
|
|
return atoi(data); |
|
} |
|
#endif |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void |
|
print_blanks(int16_t num) |
|
{ |
|
while(num > 0) { |
|
num--; |
|
cliSerial->println(""); |
|
} |
|
} |
|
|
|
|
|
static bool |
|
wait_for_yes() |
|
{ |
|
int c; |
|
cliSerial->flush(); |
|
cliSerial->printf_P(PSTR("Y to save\n")); |
|
|
|
do { |
|
c = cliSerial->read(); |
|
} while (-1 == c); |
|
|
|
if (('y' == c) || ('Y' == c)) |
|
return true; |
|
else |
|
return false; |
|
} |
|
|
|
static void |
|
print_divider(void) |
|
{ |
|
for (int i = 0; i < 40; i++) { |
|
cliSerial->print_P(PSTR("-")); |
|
} |
|
cliSerial->println(); |
|
} |
|
|
|
static void print_enabled(bool b) |
|
{ |
|
if(b) |
|
cliSerial->print_P(PSTR("en")); |
|
else |
|
cliSerial->print_P(PSTR("dis")); |
|
cliSerial->print_P(PSTR("abled\n")); |
|
} |
|
|
|
|
|
static void |
|
init_esc() |
|
{ |
|
motors.enable(); |
|
motors.armed(true); |
|
while(1) { |
|
read_radio(); |
|
delay(100); |
|
dancing_light(); |
|
motors.throttle_pass_through(); |
|
} |
|
} |
|
|
|
static void print_wp(struct Location *cmd, byte index) |
|
{ |
|
//float t1 = (float)cmd->lat / t7; |
|
//float t2 = (float)cmd->lng / t7; |
|
|
|
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"), |
|
index, |
|
cmd->id, |
|
cmd->options, |
|
cmd->p1, |
|
cmd->alt, |
|
cmd->lat, |
|
cmd->lng); |
|
|
|
/* |
|
cliSerial->printf_P(PSTR("cmd#: %d id:%d op:%d p1:%d p2:%ld p3:%4.7f p4:%4.7f \n"), |
|
(int)index, |
|
(int)cmd->id, |
|
(int)cmd->options, |
|
(int)cmd->p1, |
|
(long)cmd->alt, |
|
t1, |
|
t2); |
|
*/ |
|
} |
|
|
|
static void report_version() |
|
{ |
|
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version); |
|
print_divider(); |
|
print_blanks(2); |
|
} |
|
|
|
|
|
static void report_tuning() |
|
{ |
|
cliSerial->printf_P(PSTR("\nTUNE:\n")); |
|
print_divider(); |
|
if (g.radio_tuning == 0) { |
|
print_enabled(g.radio_tuning.get()); |
|
}else{ |
|
float low = (float)g.radio_tuning_low.get() / 1000; |
|
float high = (float)g.radio_tuning_high.get() / 1000; |
|
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high); |
|
} |
|
print_blanks(2); |
|
}
|
|
|