You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
541 lines
16 KiB
541 lines
16 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_Compass_AK8963.cpp |
|
* Code by Georgii Staroselskii. Emlid.com |
|
* |
|
* Sensor is conected to SPI port |
|
* |
|
*/ |
|
|
|
#include <AP_Math.h> |
|
#include <AP_HAL.h> |
|
#include "AP_Compass_AK8963.h" |
|
|
|
#define READ_FLAG 0x80 |
|
#define MPUREG_I2C_SLV0_ADDR 0x25 |
|
#define MPUREG_I2C_SLV0_REG 0x26 |
|
#define MPUREG_I2C_SLV0_CTRL 0x27 |
|
#define MPUREG_EXT_SENS_DATA_00 0x49 |
|
#define MPUREG_I2C_SLV0_DO 0x63 |
|
|
|
#define MPU9250_SPI_BACKEND 1 |
|
|
|
#define MPUREG_PWR_MGMT_1 0x6B |
|
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator |
|
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference |
|
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference |
|
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset |
|
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor |
|
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL |
|
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode |
|
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device |
|
|
|
/* bit definitions for MPUREG_USER_CTRL */ |
|
#define MPUREG_USER_CTRL 0x6A |
|
# define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */ |
|
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 |
|
|
|
/* bit definitions for MPUREG_MST_CTRL */ |
|
#define MPUREG_I2C_MST_CTRL 0x24 |
|
# define I2C_SLV0_EN 0x80 |
|
# define I2C_MST_CLOCK_400KHZ 0x0D |
|
|
|
#define AK8963_I2C_ADDR 0x0c |
|
|
|
#define AK8963_WIA 0x00 |
|
# define AK8963_Device_ID 0x48 |
|
|
|
#define AK8963_INFO 0x01 |
|
|
|
#define AK8963_ST1 0x02 |
|
# define AK8963_DRDY 0x01 |
|
# define AK8963_DOR 0x02 |
|
|
|
#define AK8963_HXL 0x03 |
|
|
|
/* bit definitions for AK8963 CNTL1 */ |
|
#define AK8963_CNTL1 0x0A |
|
# define AK8963_CONTINUOUS_MODE1 0x2 |
|
# define AK8963_CONTINUOUS_MODE2 0x6 |
|
# define AK8963_SELFTEST_MODE 0x8 |
|
# define AK8963_POWERDOWN_MODE 0x0 |
|
# define AK8963_FUSE_MODE 0xf |
|
# define AK8963_16BIT_ADC 0x10 |
|
# define AK8963_14BIT_ADC 0x00 |
|
|
|
#define AK8963_CNTL2 0x0B |
|
# define AK8963_RESET 0x01 |
|
|
|
#define AK8963_ASTC 0x0C |
|
# define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40 |
|
|
|
#define AK8963_ASAX 0x10 |
|
|
|
#define AK8963_DEBUG 0 |
|
#define AK8963_SELFTEST 0 |
|
#if AK8963_DEBUG |
|
#define error(...) fprintf(stderr, __VA_ARGS__) |
|
#define debug(...) hal.console->printf(__VA_ARGS__) |
|
#define ASSERT(x) assert(x) |
|
#else |
|
#define error(...) |
|
#define debug(...) |
|
#define ASSERT(x) |
|
#endif |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
AK8963_MPU9250_SPI_Backend::AK8963_MPU9250_SPI_Backend() |
|
{ |
|
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250); |
|
|
|
if (_spi == NULL) { |
|
hal.scheduler->panic(PSTR("Cannot get SPIDevice_MPU9250")); |
|
} |
|
|
|
_spi_sem = _spi->get_semaphore(); |
|
} |
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_take_blocking() |
|
{ |
|
return _spi_sem->take(10); |
|
} |
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_give() |
|
{ |
|
return _spi_sem->give(); |
|
} |
|
|
|
bool AK8963_MPU9250_SPI_Backend::sem_take_nonblocking() |
|
{ |
|
/** |
|
* Take nonblocking from a TimerProcess context & |
|
* monitor for bad failures |
|
*/ |
|
static int _sem_failure_count = 0; |
|
bool got = _spi_sem->take_nonblocking(); |
|
if (!got) { |
|
if (!hal.scheduler->system_initializing()) { |
|
_sem_failure_count++; |
|
if (_sem_failure_count > 100) { |
|
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem " |
|
"100 times in a row, in " |
|
"AP_Compass_AK8963::_update")); |
|
} |
|
} |
|
return false; /* never reached */ |
|
} else { |
|
_sem_failure_count = 0; |
|
} |
|
return got; |
|
} |
|
|
|
void AK8963_MPU9250_SPI_Backend::read(uint8_t address, uint8_t *buf, uint32_t count) |
|
{ |
|
ASSERT(count < 10); |
|
uint8_t tx[11]; |
|
uint8_t rx[11]; |
|
|
|
tx[0] = address | READ_FLAG; |
|
tx[1] = 0; |
|
_spi->transaction(tx, rx, count + 1); |
|
|
|
memcpy(buf, rx + 1, count); |
|
} |
|
|
|
void AK8963_MPU9250_SPI_Backend::write(uint8_t address, const uint8_t *buf, uint32_t count) |
|
{ |
|
ASSERT(count < 2); |
|
uint8_t tx[2]; |
|
|
|
tx[0] = address; |
|
memcpy(tx+1, buf, count); |
|
|
|
_spi->transaction(tx, NULL, count + 1); |
|
} |
|
|
|
AP_Compass_AK8963_MPU9250::AP_Compass_AK8963_MPU9250(Compass &compass): |
|
AP_Compass_AK8963(compass) |
|
{ |
|
} |
|
|
|
// detect the sensor |
|
AP_Compass_Backend *AP_Compass_AK8963_MPU9250::detect(Compass &compass) |
|
{ |
|
AP_Compass_AK8963_MPU9250 *sensor = new AP_Compass_AK8963_MPU9250(compass); |
|
if (sensor == NULL) { |
|
return NULL; |
|
} |
|
if (!sensor->init()) { |
|
delete sensor; |
|
return NULL; |
|
} |
|
return sensor; |
|
} |
|
|
|
void AP_Compass_AK8963_MPU9250::_dump_registers() |
|
{ |
|
#if AK8963_DEBUG |
|
error(PSTR("MPU9250 registers\n")); |
|
for (uint8_t reg=0x00; reg<=0x7E; reg++) { |
|
uint8_t v = _backend->read(reg); |
|
error(("%02x:%02x "), (unsigned)reg, (unsigned)v); |
|
if (reg % 16 == 0) { |
|
error("\n"); |
|
} |
|
} |
|
error("\n"); |
|
#endif |
|
} |
|
|
|
void AP_Compass_AK8963_MPU9250::_backend_reset() |
|
{ |
|
_backend->write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET); |
|
} |
|
|
|
bool AP_Compass_AK8963_MPU9250::_backend_init() |
|
{ |
|
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */ |
|
_backend->write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); /* I2C configuration multi-master IIC 400KHz */ |
|
|
|
return true; |
|
} |
|
|
|
bool AP_Compass_AK8963_MPU9250::init() |
|
{ |
|
#if MPU9250_SPI_BACKEND |
|
_backend = new AK8963_MPU9250_SPI_Backend(); |
|
if (_backend == NULL) { |
|
hal.scheduler->panic(PSTR("_backend coudln't be allocated")); |
|
} |
|
return AP_Compass_AK8963::init(); |
|
#else |
|
#error Wrong backend for AK8963 is selected |
|
/* other backends not implented yet */ |
|
return false; |
|
#endif |
|
} |
|
|
|
void AP_Compass_AK8963_MPU9250::_register_write(uint8_t address, uint8_t value) |
|
{ |
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for _register_write. */ |
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ |
|
_backend->write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */ |
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */ |
|
} |
|
|
|
void AP_Compass_AK8963_MPU9250::_register_read(uint8_t address, uint8_t count, uint8_t *value) |
|
{ |
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ |
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ |
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ |
|
|
|
hal.scheduler->delay(10); |
|
_backend->read(MPUREG_EXT_SENS_DATA_00, value, count); |
|
} |
|
|
|
uint8_t AP_Compass_AK8963_MPU9250::_read_id() |
|
{ |
|
return 1; |
|
} |
|
|
|
bool AP_Compass_AK8963_MPU9250::read_raw() |
|
{ |
|
uint8_t rx[14] = {0}; |
|
|
|
const uint8_t count = 9; |
|
_backend->read(MPUREG_EXT_SENS_DATA_00, rx, count); |
|
|
|
uint8_t st2 = rx[8]; /* End data read by reading ST2 register */ |
|
|
|
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx])) |
|
|
|
if(!(st2 & 0x08)) { |
|
_mag_x = (float) int16_val(rx, 1); |
|
_mag_y = (float) int16_val(rx, 2); |
|
_mag_z = (float) int16_val(rx, 3); |
|
|
|
if (_mag_x == 0 && _mag_y == 0 && _mag_z == 0) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} else { |
|
return false; |
|
} |
|
|
|
} |
|
|
|
AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass) : |
|
AP_Compass_Backend(compass), |
|
_backend(NULL) |
|
{ |
|
_initialised = false; |
|
_mag_x_accum =_mag_y_accum = _mag_z_accum = 0; |
|
_mag_x =_mag_y = _mag_z = 0; |
|
_accum_count = 0; |
|
_magnetometer_adc_resolution = AK8963_16BIT_ADC; |
|
} |
|
|
|
|
|
/* stub to satisfy Compass API*/ |
|
void AP_Compass_AK8963::accumulate(void) |
|
{ |
|
} |
|
|
|
bool AP_Compass_AK8963::_self_test() |
|
{ |
|
bool success = false; |
|
|
|
/* see AK8963.pdf p.19 */ |
|
|
|
/* Set power-down mode */ |
|
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution); |
|
|
|
/* Turn the internal magnetic field on */ |
|
_register_write(AK8963_ASTC, AK8983_SELFTEST_MAGNETIC_FIELD_ON); |
|
|
|
/* Register value to self-test mode in 14-bit */ |
|
_register_write(AK8963_CNTL1, AK8963_SELFTEST_MODE | _magnetometer_adc_resolution); |
|
|
|
_start_conversion(); |
|
hal.scheduler->delay(20); |
|
read_raw(); |
|
|
|
float hx = _mag_x; |
|
float hy = _mag_y; |
|
float hz = _mag_z; |
|
|
|
error("AK8963's SELF-TEST STARTED\n"); |
|
|
|
switch (_magnetometer_adc_resolution) { |
|
bool hx_is_in_range; |
|
bool hy_is_in_range; |
|
bool hz_is_in_range; |
|
case AK8963_14BIT_ADC: |
|
hx_is_in_range = (hx >= - 50) && (hx <= 50); |
|
hy_is_in_range = (hy >= - 50) && (hy <= 50); |
|
hz_is_in_range = (hz >= - 800) && (hz <= -200); |
|
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) { |
|
success = true; |
|
} |
|
break; |
|
case AK8963_16BIT_ADC: |
|
hx_is_in_range = (hx >= -200) && (hx <= 200); |
|
hy_is_in_range = (hy >= -200) && (hy <= 200); |
|
hz_is_in_range = (hz >= -3200) && (hz <= -800); |
|
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) { |
|
success = true; |
|
} |
|
break; |
|
default: |
|
success = false; |
|
hal.scheduler->panic(PSTR("Wrong AK8963's ADC resolution selected")); |
|
break; |
|
} |
|
|
|
error("AK8963's SELF-TEST ENDED: %f %f %f\n", hx, hy, hz); |
|
|
|
/* Turn the internal magnetic field off */ |
|
_register_write(AK8963_ASTC, 0x0); |
|
|
|
/* Register value to continuous measurement in 14-bit */ |
|
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution); |
|
|
|
return success; |
|
} |
|
|
|
bool AP_Compass_AK8963::init() |
|
{ |
|
// register the compass instance in the frontend |
|
_compass_instance = register_compass(); |
|
|
|
hal.scheduler->suspend_timer_procs(); |
|
if (!_backend->sem_take_blocking()) { |
|
error("_spi_sem->take failed\n"); |
|
return false; |
|
} |
|
|
|
|
|
if (!_backend_init()) { |
|
_backend->sem_give(); |
|
return false; |
|
} |
|
|
|
_register_write(AK8963_CNTL2, AK8963_RESET); /* Reset AK8963 */ |
|
|
|
hal.scheduler->delay(1000); |
|
|
|
int id_mismatch_count; |
|
uint8_t deviceid; |
|
for (id_mismatch_count = 0; id_mismatch_count < 5; id_mismatch_count++) { |
|
_register_read(AK8963_WIA, 0x01, &deviceid); /* Read AK8963's id */ |
|
|
|
if (deviceid == AK8963_Device_ID) { |
|
break; |
|
} |
|
|
|
error("trying to read AK8963's ID once more...\n"); |
|
_backend_reset(); |
|
hal.scheduler->delay(100); |
|
_dump_registers(); |
|
} |
|
|
|
if (id_mismatch_count == 5) { |
|
_initialised = false; |
|
hal.console->printf("WRONG AK8963 DEVICE ID: 0x%x\n", (unsigned)deviceid); |
|
hal.scheduler->panic(PSTR("AK8963: bad DEVICE ID")); |
|
} |
|
|
|
_calibrate(); |
|
|
|
_initialised = true; |
|
|
|
#if AK8963_SELFTEST |
|
if (_self_test()) { |
|
_initialised = true; |
|
} else { |
|
_initialised = false; |
|
} |
|
#endif |
|
|
|
/* Register value to continuous measurement */ |
|
_register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution); |
|
|
|
_backend->sem_give(); |
|
|
|
hal.scheduler->resume_timer_procs(); |
|
hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Compass_AK8963::_update)); |
|
|
|
_start_conversion(); |
|
|
|
_initialised = true; |
|
return _initialised; |
|
} |
|
|
|
void AP_Compass_AK8963::_update() |
|
{ |
|
if (hal.scheduler->micros() - _last_update_timestamp < 10000) { |
|
return; |
|
} |
|
|
|
if (!_backend->sem_take_nonblocking()) { |
|
return; |
|
} |
|
|
|
switch (_state) |
|
{ |
|
case CONVERSION: |
|
_start_conversion(); |
|
_state = SAMPLE; |
|
break; |
|
case SAMPLE: |
|
_collect_samples(); |
|
_state = CONVERSION; |
|
break; |
|
case ERROR: |
|
break; |
|
default: |
|
break; |
|
} |
|
|
|
_last_update_timestamp = hal.scheduler->micros(); |
|
_backend->sem_give(); |
|
} |
|
|
|
bool AP_Compass_AK8963::_calibrate() |
|
{ |
|
error("CALIBRATTION START\n"); |
|
_register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */ |
|
|
|
hal.scheduler->delay(10); |
|
|
|
uint8_t response[3]; |
|
_register_read(AK8963_ASAX, 0x03, response); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
float data = response[i]; |
|
magnetometer_ASA[i] = ((data-128)/256+1); |
|
error("%d: %lf\n", i, magnetometer_ASA[i]); |
|
} |
|
|
|
error("CALIBRATTION END\n"); |
|
|
|
return true; |
|
} |
|
|
|
void AP_Compass_AK8963::read() |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
if (_accum_count == 0) { |
|
/* We're not ready to publish*/ |
|
return; |
|
} |
|
|
|
/* Update */ |
|
Vector3f field(_mag_x_accum * magnetometer_ASA[0], |
|
_mag_y_accum * magnetometer_ASA[1], |
|
_mag_z_accum * magnetometer_ASA[2]); |
|
|
|
field /= _accum_count; |
|
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0; |
|
_accum_count = 0; |
|
|
|
publish_field(field, _compass_instance); |
|
} |
|
|
|
void AP_Compass_AK8963::_start_conversion() |
|
{ |
|
static const uint8_t address = AK8963_INFO; |
|
/* Read registers from INFO through ST2 */ |
|
static const uint8_t count = 0x09; |
|
|
|
_backend_init(); |
|
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */ |
|
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ |
|
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ |
|
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ |
|
} |
|
|
|
void AP_Compass_AK8963::_collect_samples() |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
if (!read_raw()) { |
|
error("read_raw failed\n"); |
|
} else { |
|
_mag_x_accum += _mag_x; |
|
_mag_y_accum += _mag_y; |
|
_mag_z_accum += _mag_z; |
|
_accum_count++; |
|
if (_accum_count == 10) { |
|
_mag_x_accum /= 2; |
|
_mag_y_accum /= 2; |
|
_mag_z_accum /= 2; |
|
_accum_count = 5; |
|
} |
|
} |
|
}
|
|
|