You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
19 KiB
457 lines
19 KiB
#include "AC_AttitudeControl_Heli.h" |
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
// table of user settable parameters |
|
const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] = { |
|
// parameters from parent vehicle |
|
AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), |
|
|
|
// @Param: HOVR_ROL_TRM |
|
// @DisplayName: Hover Roll Trim |
|
// @Description: Trim the hover roll angle to counter tail rotor thrust in a hover |
|
// @Units: cdeg |
|
// @Range: 0 1000 |
|
// @User: Advanced |
|
AP_GROUPINFO("HOVR_ROL_TRM", 1, AC_AttitudeControl_Heli, _hover_roll_trim, AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT), |
|
|
|
// @Param: RAT_RLL_P |
|
// @DisplayName: Roll axis rate controller P gain |
|
// @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output |
|
// @Range: 0.08 0.35 |
|
// @Increment: 0.005 |
|
// @User: Standard |
|
|
|
// @Param: RAT_RLL_I |
|
// @DisplayName: Roll axis rate controller I gain |
|
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate |
|
// @Range: 0.01 0.6 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_RLL_IMAX |
|
// @DisplayName: Roll axis rate controller I gain maximum |
|
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output |
|
// @Range: 0 1 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_RLL_D |
|
// @DisplayName: Roll axis rate controller D gain |
|
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate |
|
// @Range: 0.001 0.03 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_RLL_FF |
|
// @DisplayName: Roll axis rate controller feed forward |
|
// @Description: Roll axis rate controller feed forward |
|
// @Range: 0 0.5 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_RLL_FILT |
|
// @DisplayName: Roll axis rate controller input frequency in Hz |
|
// @Description: Roll axis rate controller input frequency in Hz |
|
// @Units: Hz |
|
// @Range: 1 20 |
|
// @Increment: 1 |
|
AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 2, AC_AttitudeControl_Heli, AC_HELI_PID), |
|
|
|
// @Param: RAT_PIT_P |
|
// @DisplayName: Pitch axis rate controller P gain |
|
// @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output |
|
// @Range: 0.08 0.35 |
|
// @Increment: 0.005 |
|
// @User: Standard |
|
|
|
// @Param: RAT_PIT_I |
|
// @DisplayName: Pitch axis rate controller I gain |
|
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate |
|
// @Range: 0.01 0.6 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_PIT_IMAX |
|
// @DisplayName: Pitch axis rate controller I gain maximum |
|
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output |
|
// @Range: 0 1 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_PIT_D |
|
// @DisplayName: Pitch axis rate controller D gain |
|
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate |
|
// @Range: 0.001 0.03 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_PIT_FF |
|
// @DisplayName: Pitch axis rate controller feed forward |
|
// @Description: Pitch axis rate controller feed forward |
|
// @Range: 0 0.5 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_PIT_FILT |
|
// @DisplayName: Pitch axis rate controller input frequency in Hz |
|
// @Description: Pitch axis rate controller input frequency in Hz |
|
// @Units: Hz |
|
// @Range: 1 20 |
|
// @Increment: 1 |
|
AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 3, AC_AttitudeControl_Heli, AC_HELI_PID), |
|
|
|
// @Param: RAT_YAW_P |
|
// @DisplayName: Yaw axis rate controller P gain |
|
// @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output |
|
// @Range: 0.180 0.60 |
|
// @Increment: 0.005 |
|
// @User: Standard |
|
|
|
// @Param: RAT_YAW_I |
|
// @DisplayName: Yaw axis rate controller I gain |
|
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate |
|
// @Range: 0.01 0.06 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_YAW_IMAX |
|
// @DisplayName: Yaw axis rate controller I gain maximum |
|
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output |
|
// @Range: 0 1 |
|
// @Increment: 0.01 |
|
// @User: Standard |
|
|
|
// @Param: RAT_YAW_D |
|
// @DisplayName: Yaw axis rate controller D gain |
|
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate |
|
// @Range: 0.000 0.02 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_YAW_FF |
|
// @DisplayName: Yaw axis rate controller feed forward |
|
// @Description: Yaw axis rate controller feed forward |
|
// @Range: 0 0.5 |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
|
|
// @Param: RAT_YAW_FILT |
|
// @DisplayName: Yaw axis rate controller input frequency in Hz |
|
// @Description: Yaw axis rate controller input frequency in Hz |
|
// @Units: Hz |
|
// @Range: 1 20 |
|
// @Increment: 1 |
|
AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 4, AC_AttitudeControl_Heli, AC_HELI_PID), |
|
|
|
// @Param: PIRO_COMP |
|
// @DisplayName: Piro Comp Enable |
|
// @Description: Pirouette compensation enabled |
|
// @Values: 0:Disabled,1:Enabled |
|
// @User: Advanced |
|
AP_GROUPINFO("PIRO_COMP", 5, AC_AttitudeControl_Heli, _piro_comp_enabled, 0), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode |
|
void AC_AttitudeControl_Heli::passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds) |
|
{ |
|
// convert from centidegrees on public interface to radians |
|
float yaw_rate_bf_rads = radians(yaw_rate_bf_cds*0.01f); |
|
|
|
// store roll, pitch and passthroughs |
|
// NOTE: this abuses yaw_rate_bf_rads |
|
_passthrough_roll = roll_passthrough; |
|
_passthrough_pitch = pitch_passthrough; |
|
_passthrough_yaw = degrees(yaw_rate_bf_rads)*100.0f; |
|
|
|
// set rate controller to use pass through |
|
_flags_heli.flybar_passthrough = true; |
|
|
|
// set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro) |
|
_attitude_target_ang_vel.x = _ahrs.get_gyro().x; |
|
_attitude_target_ang_vel.y = _ahrs.get_gyro().y; |
|
|
|
// accel limit desired yaw rate |
|
if (get_accel_yaw_max_radss() > 0.0f) { |
|
float rate_change_limit_rads = get_accel_yaw_max_radss() * _dt; |
|
float rate_change_rads = yaw_rate_bf_rads - _attitude_target_ang_vel.z; |
|
rate_change_rads = constrain_float(rate_change_rads, -rate_change_limit_rads, rate_change_limit_rads); |
|
_attitude_target_ang_vel.z += rate_change_rads; |
|
} else { |
|
_attitude_target_ang_vel.z = yaw_rate_bf_rads; |
|
} |
|
|
|
integrate_bf_rate_error_to_angle_errors(); |
|
_att_error_rot_vec_rad.x = 0; |
|
_att_error_rot_vec_rad.y = 0; |
|
|
|
// update our earth-frame angle targets |
|
Vector3f att_error_euler_rad; |
|
|
|
// convert angle error rotation vector into 321-intrinsic euler angle difference |
|
// NOTE: this results an an approximation linearized about the vehicle's attitude |
|
if (ang_vel_to_euler_rate(Vector3f(_ahrs.roll,_ahrs.pitch,_ahrs.yaw), _att_error_rot_vec_rad, att_error_euler_rad)) { |
|
_attitude_target_euler_angle.x = wrap_PI(att_error_euler_rad.x + _ahrs.roll); |
|
_attitude_target_euler_angle.y = wrap_PI(att_error_euler_rad.y + _ahrs.pitch); |
|
_attitude_target_euler_angle.z = wrap_2PI(att_error_euler_rad.z + _ahrs.yaw); |
|
} |
|
|
|
// handle flipping over pitch axis |
|
if (_attitude_target_euler_angle.y > M_PI/2.0f) { |
|
_attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI); |
|
_attitude_target_euler_angle.y = wrap_PI(M_PI - _attitude_target_euler_angle.x); |
|
_attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI); |
|
} |
|
if (_attitude_target_euler_angle.y < -M_PI/2.0f) { |
|
_attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + M_PI); |
|
_attitude_target_euler_angle.y = wrap_PI(-M_PI - _attitude_target_euler_angle.x); |
|
_attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + M_PI); |
|
} |
|
|
|
// convert body-frame angle errors to body-frame rate targets |
|
_rate_target_ang_vel = update_ang_vel_target_from_att_error(_att_error_rot_vec_rad); |
|
|
|
// set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates |
|
_rate_target_ang_vel.x = _attitude_target_ang_vel.x; |
|
_rate_target_ang_vel.y = _attitude_target_ang_vel.y; |
|
|
|
// add desired target to yaw |
|
_rate_target_ang_vel.z += _attitude_target_ang_vel.z; |
|
_thrust_error_angle = norm(_att_error_rot_vec_rad.x, _att_error_rot_vec_rad.y); |
|
} |
|
|
|
void AC_AttitudeControl_Heli::integrate_bf_rate_error_to_angle_errors() |
|
{ |
|
// Integrate the angular velocity error into the attitude error |
|
_att_error_rot_vec_rad += (_attitude_target_ang_vel - _ahrs.get_gyro()) * _dt; |
|
|
|
// Constrain attitude error |
|
_att_error_rot_vec_rad.x = constrain_float(_att_error_rot_vec_rad.x, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); |
|
_att_error_rot_vec_rad.y = constrain_float(_att_error_rot_vec_rad.y, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); |
|
_att_error_rot_vec_rad.z = constrain_float(_att_error_rot_vec_rad.z, -AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD, AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD); |
|
} |
|
|
|
// subclass non-passthrough too, for external gyro, no flybar |
|
void AC_AttitudeControl_Heli::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds) |
|
{ |
|
_passthrough_yaw = yaw_rate_bf_cds; |
|
|
|
AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(roll_rate_bf_cds, pitch_rate_bf_cds, yaw_rate_bf_cds); |
|
} |
|
|
|
// |
|
// rate controller (body-frame) methods |
|
// |
|
|
|
// rate_controller_run - run lowest level rate controller and send outputs to the motors |
|
// should be called at 100hz or more |
|
void AC_AttitudeControl_Heli::rate_controller_run() |
|
{ |
|
Vector3f gyro_latest = _ahrs.get_gyro_latest(); |
|
|
|
// call rate controllers and send output to motors object |
|
// if using a flybar passthrough roll and pitch directly to motors |
|
if (_flags_heli.flybar_passthrough) { |
|
_motors.set_roll(_passthrough_roll/4500.0f); |
|
_motors.set_pitch(_passthrough_pitch/4500.0f); |
|
} else { |
|
rate_bf_to_motor_roll_pitch(gyro_latest, _rate_target_ang_vel.x, _rate_target_ang_vel.y); |
|
} |
|
if (_flags_heli.tail_passthrough) { |
|
_motors.set_yaw(_passthrough_yaw/4500.0f); |
|
} else { |
|
_motors.set_yaw(rate_target_to_motor_yaw(gyro_latest.z, _rate_target_ang_vel.z)); |
|
} |
|
} |
|
|
|
// Update Alt_Hold angle maximum |
|
void AC_AttitudeControl_Heli::update_althold_lean_angle_max(float throttle_in) |
|
{ |
|
float althold_lean_angle_max = acos(constrain_float(_throttle_in/AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX, 0.0f, 1.0f)); |
|
_althold_lean_angle_max = _althold_lean_angle_max + (_dt/(_dt+_angle_limit_tc))*(althold_lean_angle_max-_althold_lean_angle_max); |
|
} |
|
|
|
// |
|
// private methods |
|
// |
|
|
|
// |
|
// body-frame rate controller |
|
// |
|
|
|
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second |
|
void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(const Vector3f &rate_rads, float rate_roll_target_rads, float rate_pitch_target_rads) |
|
{ |
|
float roll_pd, roll_i, roll_ff; // used to capture pid values |
|
float pitch_pd, pitch_i, pitch_ff; // used to capture pid values |
|
float rate_roll_error_rads, rate_pitch_error_rads; // simply target_rate - current_rate |
|
float roll_out, pitch_out; |
|
|
|
// calculate error |
|
rate_roll_error_rads = rate_roll_target_rads - rate_rads.x; |
|
rate_pitch_error_rads = rate_pitch_target_rads - rate_rads.y; |
|
|
|
// pass error to PID controller |
|
_pid_rate_roll.set_input_filter_all(rate_roll_error_rads); |
|
_pid_rate_roll.set_desired_rate(rate_roll_target_rads); |
|
_pid_rate_pitch.set_input_filter_all(rate_pitch_error_rads); |
|
_pid_rate_pitch.set_desired_rate(rate_pitch_target_rads); |
|
|
|
// call p and d controllers |
|
roll_pd = _pid_rate_roll.get_p() + _pid_rate_roll.get_d(); |
|
pitch_pd = _pid_rate_pitch.get_p() + _pid_rate_pitch.get_d(); |
|
|
|
// get roll i term |
|
roll_i = _pid_rate_roll.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_roll || ((roll_i>0&&rate_roll_error_rads<0)||(roll_i<0&&rate_roll_error_rads>0))){ |
|
if (_flags_heli.leaky_i){ |
|
roll_i = _pid_rate_roll.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); |
|
}else{ |
|
roll_i = _pid_rate_roll.get_i(); |
|
} |
|
} |
|
|
|
// get pitch i term |
|
pitch_i = _pid_rate_pitch.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_pitch || ((pitch_i>0&&rate_pitch_error_rads<0)||(pitch_i<0&&rate_pitch_error_rads>0))){ |
|
if (_flags_heli.leaky_i) { |
|
pitch_i = _pid_rate_pitch.get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); |
|
}else{ |
|
pitch_i = _pid_rate_pitch.get_i(); |
|
} |
|
} |
|
|
|
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward |
|
roll_ff = roll_feedforward_filter.apply(_pid_rate_roll.get_ff(rate_roll_target_rads), _dt); |
|
pitch_ff = pitch_feedforward_filter.apply(_pid_rate_pitch.get_ff(rate_pitch_target_rads), _dt); |
|
|
|
// add feed forward and final output |
|
roll_out = roll_pd + roll_i + roll_ff; |
|
pitch_out = pitch_pd + pitch_i + pitch_ff; |
|
|
|
// constrain output and update limit flags |
|
if (fabsf(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { |
|
roll_out = constrain_float(roll_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_roll = true; |
|
}else{ |
|
_flags_heli.limit_roll = false; |
|
} |
|
if (fabsf(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { |
|
pitch_out = constrain_float(pitch_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_pitch = true; |
|
}else{ |
|
_flags_heli.limit_pitch = false; |
|
} |
|
|
|
// output to motors |
|
_motors.set_roll(roll_out); |
|
_motors.set_pitch(pitch_out); |
|
|
|
// Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the |
|
// helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability |
|
// as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs. |
|
// It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption. |
|
if (_piro_comp_enabled){ |
|
|
|
int32_t piro_roll_i, piro_pitch_i; // used to hold I-terms while doing piro comp |
|
|
|
piro_roll_i = roll_i; |
|
piro_pitch_i = pitch_i; |
|
|
|
Vector2f yawratevector; |
|
yawratevector.x = cosf(-rate_rads.z * _dt); |
|
yawratevector.y = sinf(-rate_rads.z * _dt); |
|
yawratevector.normalize(); |
|
|
|
roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y; |
|
pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y; |
|
|
|
_pid_rate_pitch.set_integrator(pitch_i); |
|
_pid_rate_roll.set_integrator(roll_i); |
|
} |
|
|
|
} |
|
|
|
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second |
|
float AC_AttitudeControl_Heli::rate_target_to_motor_yaw(float rate_yaw_actual_rads, float rate_target_rads) |
|
{ |
|
float pd,i,vff; // used to capture pid values for logging |
|
float rate_error_rads; // simply target_rate - current_rate |
|
float yaw_out; |
|
|
|
// calculate error and call pid controller |
|
rate_error_rads = rate_target_rads - rate_yaw_actual_rads; |
|
|
|
// pass error to PID controller |
|
_pid_rate_yaw.set_input_filter_all(rate_error_rads); |
|
_pid_rate_yaw.set_desired_rate(rate_target_rads); |
|
|
|
// get p and d |
|
pd = _pid_rate_yaw.get_p() + _pid_rate_yaw.get_d(); |
|
|
|
// get i term |
|
i = _pid_rate_yaw.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
if (!_flags_heli.limit_yaw || ((i>0&&rate_error_rads<0)||(i<0&&rate_error_rads>0))) { |
|
if (((AP_MotorsHeli&)_motors).rotor_runup_complete()) { |
|
i = _pid_rate_yaw.get_i(); |
|
} else { |
|
i = ((AC_HELI_PID&)_pid_rate_yaw).get_leaky_i(AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up |
|
} |
|
} |
|
|
|
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward |
|
vff = yaw_velocity_feedforward_filter.apply(_pid_rate_yaw.get_ff(rate_target_rads), _dt); |
|
|
|
// add feed forward |
|
yaw_out = pd + i + vff; |
|
|
|
// constrain output and update limit flag |
|
if (fabsf(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) { |
|
yaw_out = constrain_float(yaw_out,-AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); |
|
_flags_heli.limit_yaw = true; |
|
}else{ |
|
_flags_heli.limit_yaw = false; |
|
} |
|
|
|
// output to motors |
|
return yaw_out; |
|
} |
|
|
|
// |
|
// throttle functions |
|
// |
|
|
|
void AC_AttitudeControl_Heli::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) |
|
{ |
|
_throttle_in = throttle_in; |
|
update_althold_lean_angle_max(throttle_in); |
|
_motors.set_throttle_filter_cutoff(filter_cutoff); |
|
_motors.set_throttle(throttle_in); |
|
// Clear angle_boost for logging purposes |
|
_angle_boost = 0.0f; |
|
} |
|
|
|
// Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing |
|
void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain) |
|
{ |
|
if (_inverted_flight) { |
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000); |
|
} |
|
AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_rate_cds, smoothing_gain); |
|
} |
|
|
|
// Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing |
|
void AC_AttitudeControl_Heli::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw, float smoothing_gain) |
|
{ |
|
if (_inverted_flight) { |
|
euler_roll_angle_cd = wrap_180_cd(euler_roll_angle_cd + 18000); |
|
} |
|
AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(euler_roll_angle_cd, euler_pitch_angle_cd, euler_yaw_angle_cd, slew_yaw, smoothing_gain); |
|
}
|
|
|