You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1339 lines
49 KiB
1339 lines
49 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "Plane.h" |
|
|
|
/* |
|
get a speed scaling number for control surfaces. This is applied to |
|
PIDs to change the scaling of the PID with speed. At high speed we |
|
move the surfaces less, and at low speeds we move them more. |
|
*/ |
|
float Plane::get_speed_scaler(void) |
|
{ |
|
float aspeed, speed_scaler; |
|
if (ahrs.airspeed_estimate(&aspeed)) { |
|
if (aspeed > auto_state.highest_airspeed) { |
|
auto_state.highest_airspeed = aspeed; |
|
} |
|
if (aspeed > 0) { |
|
speed_scaler = g.scaling_speed / aspeed; |
|
} else { |
|
speed_scaler = 2.0; |
|
} |
|
speed_scaler = constrain_float(speed_scaler, 0.5f, 2.0f); |
|
} else { |
|
if (channel_throttle->get_servo_out() > 0) { |
|
speed_scaler = 0.5f + ((float)THROTTLE_CRUISE / channel_throttle->get_servo_out() / 2.0f); // First order taylor expansion of square root |
|
// Should maybe be to the 2/7 power, but we aren't going to implement that... |
|
}else{ |
|
speed_scaler = 1.67f; |
|
} |
|
// This case is constrained tighter as we don't have real speed info |
|
speed_scaler = constrain_float(speed_scaler, 0.6f, 1.67f); |
|
} |
|
return speed_scaler; |
|
} |
|
|
|
/* |
|
return true if the current settings and mode should allow for stick mixing |
|
*/ |
|
bool Plane::stick_mixing_enabled(void) |
|
{ |
|
if (auto_throttle_mode) { |
|
// we're in an auto mode. Check the stick mixing flag |
|
if (g.stick_mixing != STICK_MIXING_DISABLED && |
|
geofence_stickmixing() && |
|
failsafe.state == FAILSAFE_NONE && |
|
!rc_failsafe_active()) { |
|
// we're in an auto mode, and haven't triggered failsafe |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
if (failsafe.ch3_failsafe && g.short_fs_action == 2) { |
|
// don't do stick mixing in FBWA glide mode |
|
return false; |
|
} |
|
|
|
// non-auto mode. Always do stick mixing |
|
return true; |
|
} |
|
|
|
|
|
/* |
|
this is the main roll stabilization function. It takes the |
|
previously set nav_roll calculates roll servo_out to try to |
|
stabilize the plane at the given roll |
|
*/ |
|
void Plane::stabilize_roll(float speed_scaler) |
|
{ |
|
if (fly_inverted()) { |
|
// we want to fly upside down. We need to cope with wrap of |
|
// the roll_sensor interfering with wrap of nav_roll, which |
|
// would really confuse the PID code. The easiest way to |
|
// handle this is to ensure both go in the same direction from |
|
// zero |
|
nav_roll_cd += 18000; |
|
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000; |
|
} |
|
|
|
bool disable_integrator = false; |
|
if (control_mode == STABILIZE && channel_roll->get_control_in() != 0) { |
|
disable_integrator = true; |
|
} |
|
channel_roll->set_servo_out(rollController.get_servo_out(nav_roll_cd - ahrs.roll_sensor, |
|
speed_scaler, |
|
disable_integrator)); |
|
} |
|
|
|
/* |
|
this is the main pitch stabilization function. It takes the |
|
previously set nav_pitch and calculates servo_out values to try to |
|
stabilize the plane at the given attitude. |
|
*/ |
|
void Plane::stabilize_pitch(float speed_scaler) |
|
{ |
|
int8_t force_elevator = takeoff_tail_hold(); |
|
if (force_elevator != 0) { |
|
// we are holding the tail down during takeoff. Just convert |
|
// from a percentage to a -4500..4500 centidegree angle |
|
channel_pitch->set_servo_out(45*force_elevator); |
|
return; |
|
} |
|
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + channel_throttle->get_servo_out() * g.kff_throttle_to_pitch; |
|
bool disable_integrator = false; |
|
if (control_mode == STABILIZE && channel_pitch->get_control_in() != 0) { |
|
disable_integrator = true; |
|
} |
|
channel_pitch->set_servo_out(pitchController.get_servo_out(demanded_pitch - ahrs.pitch_sensor, |
|
speed_scaler, |
|
disable_integrator)); |
|
} |
|
|
|
/* |
|
perform stick mixing on one channel |
|
This type of stick mixing reduces the influence of the auto |
|
controller as it increases the influence of the users stick input, |
|
allowing the user full deflection if needed |
|
*/ |
|
void Plane::stick_mix_channel(RC_Channel *channel, int16_t &servo_out) |
|
{ |
|
float ch_inf; |
|
|
|
ch_inf = (float)channel->get_radio_in() - (float)channel->get_radio_trim(); |
|
ch_inf = fabsf(ch_inf); |
|
ch_inf = MIN(ch_inf, 400.0f); |
|
ch_inf = ((400.0f - ch_inf) / 400.0f); |
|
servo_out *= ch_inf; |
|
servo_out += channel->pwm_to_angle(); |
|
} |
|
|
|
/* |
|
One argument version for when the servo out in the rc channel |
|
is the target |
|
*/ |
|
void Plane::stick_mix_channel(RC_Channel * channel) |
|
{ |
|
int16_t servo_out = channel->get_servo_out(); |
|
stick_mix_channel(channel,servo_out); |
|
channel->set_servo_out(servo_out); |
|
} |
|
|
|
/* |
|
this gives the user control of the aircraft in stabilization modes |
|
*/ |
|
void Plane::stabilize_stick_mixing_direct() |
|
{ |
|
if (!stick_mixing_enabled() || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == AUTOTUNE || |
|
control_mode == FLY_BY_WIRE_B || |
|
control_mode == CRUISE || |
|
control_mode == QSTABILIZE || |
|
control_mode == QHOVER || |
|
control_mode == QLOITER || |
|
control_mode == QLAND || |
|
control_mode == QRTL || |
|
control_mode == TRAINING) { |
|
return; |
|
} |
|
stick_mix_channel(channel_roll); |
|
stick_mix_channel(channel_pitch); |
|
} |
|
|
|
/* |
|
this gives the user control of the aircraft in stabilization modes |
|
using FBW style controls |
|
*/ |
|
void Plane::stabilize_stick_mixing_fbw() |
|
{ |
|
if (!stick_mixing_enabled() || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == AUTOTUNE || |
|
control_mode == FLY_BY_WIRE_B || |
|
control_mode == CRUISE || |
|
control_mode == QSTABILIZE || |
|
control_mode == QHOVER || |
|
control_mode == QLOITER || |
|
control_mode == QLAND || |
|
control_mode == QRTL || |
|
control_mode == TRAINING || |
|
(control_mode == AUTO && g.auto_fbw_steer == 42)) { |
|
return; |
|
} |
|
// do FBW style stick mixing. We don't treat it linearly |
|
// however. For inputs up to half the maximum, we use linear |
|
// addition to the nav_roll and nav_pitch. Above that it goes |
|
// non-linear and ends up as 2x the maximum, to ensure that |
|
// the user can direct the plane in any direction with stick |
|
// mixing. |
|
float roll_input = channel_roll->norm_input(); |
|
if (roll_input > 0.5f) { |
|
roll_input = (3*roll_input - 1); |
|
} else if (roll_input < -0.5f) { |
|
roll_input = (3*roll_input + 1); |
|
} |
|
nav_roll_cd += roll_input * roll_limit_cd; |
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd); |
|
|
|
float pitch_input = channel_pitch->norm_input(); |
|
if (fabsf(pitch_input) > 0.5f) { |
|
pitch_input = (3*pitch_input - 1); |
|
} |
|
if (fly_inverted()) { |
|
pitch_input = -pitch_input; |
|
} |
|
if (pitch_input > 0) { |
|
nav_pitch_cd += pitch_input * aparm.pitch_limit_max_cd; |
|
} else { |
|
nav_pitch_cd += -(pitch_input * pitch_limit_min_cd); |
|
} |
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get()); |
|
} |
|
|
|
|
|
/* |
|
stabilize the yaw axis. There are 3 modes of operation: |
|
|
|
- hold a specific heading with ground steering |
|
- rate controlled with ground steering |
|
- yaw control for coordinated flight |
|
*/ |
|
void Plane::stabilize_yaw(float speed_scaler) |
|
{ |
|
if (control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { |
|
// in land final setup for ground steering |
|
steering_control.ground_steering = true; |
|
} else { |
|
// otherwise use ground steering when no input control and we |
|
// are below the GROUND_STEER_ALT |
|
steering_control.ground_steering = (channel_roll->get_control_in() == 0 && |
|
fabsf(relative_altitude()) < g.ground_steer_alt); |
|
if (control_mode == AUTO && |
|
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || |
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) { |
|
// don't use ground steering on landing approach |
|
steering_control.ground_steering = false; |
|
} |
|
} |
|
|
|
|
|
/* |
|
first calculate steering_control.steering for a nose or tail |
|
wheel. |
|
We use "course hold" mode for the rudder when either in the |
|
final stage of landing (when the wings are help level) or when |
|
in course hold in FBWA mode (when we are below GROUND_STEER_ALT) |
|
*/ |
|
if ((control_mode == AUTO && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) || |
|
(steer_state.hold_course_cd != -1 && steering_control.ground_steering)) { |
|
calc_nav_yaw_course(); |
|
} else if (steering_control.ground_steering) { |
|
calc_nav_yaw_ground(); |
|
} |
|
|
|
/* |
|
now calculate steering_control.rudder for the rudder |
|
*/ |
|
calc_nav_yaw_coordinated(speed_scaler); |
|
} |
|
|
|
|
|
/* |
|
a special stabilization function for training mode |
|
*/ |
|
void Plane::stabilize_training(float speed_scaler) |
|
{ |
|
if (training_manual_roll) { |
|
channel_roll->set_servo_out(channel_roll->get_control_in()); |
|
} else { |
|
// calculate what is needed to hold |
|
stabilize_roll(speed_scaler); |
|
if ((nav_roll_cd > 0 && channel_roll->get_control_in() < channel_roll->get_servo_out()) || |
|
(nav_roll_cd < 0 && channel_roll->get_control_in() > channel_roll->get_servo_out())) { |
|
// allow user to get out of the roll |
|
channel_roll->set_servo_out(channel_roll->get_control_in()); |
|
} |
|
} |
|
|
|
if (training_manual_pitch) { |
|
channel_pitch->set_servo_out(channel_pitch->get_control_in()); |
|
} else { |
|
stabilize_pitch(speed_scaler); |
|
if ((nav_pitch_cd > 0 && channel_pitch->get_control_in() < channel_pitch->get_servo_out()) || |
|
(nav_pitch_cd < 0 && channel_pitch->get_control_in() > channel_pitch->get_servo_out())) { |
|
// allow user to get back to level |
|
channel_pitch->set_servo_out(channel_pitch->get_control_in()); |
|
} |
|
} |
|
|
|
stabilize_yaw(speed_scaler); |
|
} |
|
|
|
|
|
/* |
|
this is the ACRO mode stabilization function. It does rate |
|
stabilization on roll and pitch axes |
|
*/ |
|
void Plane::stabilize_acro(float speed_scaler) |
|
{ |
|
float roll_rate = (channel_roll->get_control_in()/4500.0f) * g.acro_roll_rate; |
|
float pitch_rate = (channel_pitch->get_control_in()/4500.0f) * g.acro_pitch_rate; |
|
|
|
/* |
|
check for special roll handling near the pitch poles |
|
*/ |
|
if (g.acro_locking && is_zero(roll_rate)) { |
|
/* |
|
we have no roll stick input, so we will enter "roll locked" |
|
mode, and hold the roll we had when the stick was released |
|
*/ |
|
if (!acro_state.locked_roll) { |
|
acro_state.locked_roll = true; |
|
acro_state.locked_roll_err = 0; |
|
} else { |
|
acro_state.locked_roll_err += ahrs.get_gyro().x * G_Dt; |
|
} |
|
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100; |
|
nav_roll_cd = ahrs.roll_sensor + roll_error_cd; |
|
// try to reduce the integrated angular error to zero. We set |
|
// 'stabilze' to true, which disables the roll integrator |
|
channel_roll->set_servo_out(rollController.get_servo_out(roll_error_cd, |
|
speed_scaler, |
|
true)); |
|
} else { |
|
/* |
|
aileron stick is non-zero, use pure rate control until the |
|
user releases the stick |
|
*/ |
|
acro_state.locked_roll = false; |
|
channel_roll->set_servo_out(rollController.get_rate_out(roll_rate, speed_scaler)); |
|
} |
|
|
|
if (g.acro_locking && is_zero(pitch_rate)) { |
|
/* |
|
user has zero pitch stick input, so we lock pitch at the |
|
point they release the stick |
|
*/ |
|
if (!acro_state.locked_pitch) { |
|
acro_state.locked_pitch = true; |
|
acro_state.locked_pitch_cd = ahrs.pitch_sensor; |
|
} |
|
// try to hold the locked pitch. Note that we have the pitch |
|
// integrator enabled, which helps with inverted flight |
|
nav_pitch_cd = acro_state.locked_pitch_cd; |
|
channel_pitch->set_servo_out(pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor, |
|
speed_scaler, |
|
false)); |
|
} else { |
|
/* |
|
user has non-zero pitch input, use a pure rate controller |
|
*/ |
|
acro_state.locked_pitch = false; |
|
channel_pitch->set_servo_out( pitchController.get_rate_out(pitch_rate, speed_scaler)); |
|
} |
|
|
|
/* |
|
manual rudder for now |
|
*/ |
|
steering_control.steering = steering_control.rudder = rudder_input; |
|
} |
|
|
|
/* |
|
main stabilization function for all 3 axes |
|
*/ |
|
void Plane::stabilize() |
|
{ |
|
if (control_mode == MANUAL) { |
|
// nothing to do |
|
return; |
|
} |
|
float speed_scaler = get_speed_scaler(); |
|
|
|
if (control_mode == TRAINING) { |
|
stabilize_training(speed_scaler); |
|
} else if (control_mode == ACRO) { |
|
stabilize_acro(speed_scaler); |
|
} else if (control_mode == QSTABILIZE || |
|
control_mode == QHOVER || |
|
control_mode == QLOITER || |
|
control_mode == QLAND || |
|
control_mode == QRTL) { |
|
quadplane.control_run(); |
|
} else { |
|
if (g.stick_mixing == STICK_MIXING_FBW && control_mode != STABILIZE) { |
|
stabilize_stick_mixing_fbw(); |
|
} |
|
stabilize_roll(speed_scaler); |
|
stabilize_pitch(speed_scaler); |
|
if (g.stick_mixing == STICK_MIXING_DIRECT || control_mode == STABILIZE) { |
|
stabilize_stick_mixing_direct(); |
|
} |
|
stabilize_yaw(speed_scaler); |
|
} |
|
|
|
/* |
|
see if we should zero the attitude controller integrators. |
|
*/ |
|
if (channel_throttle->get_control_in() == 0 && |
|
relative_altitude_abs_cm() < 500 && |
|
fabsf(barometer.get_climb_rate()) < 0.5f && |
|
gps.ground_speed() < 3) { |
|
// we are low, with no climb rate, and zero throttle, and very |
|
// low ground speed. Zero the attitude controller |
|
// integrators. This prevents integrator buildup pre-takeoff. |
|
rollController.reset_I(); |
|
pitchController.reset_I(); |
|
yawController.reset_I(); |
|
|
|
// if moving very slowly also zero the steering integrator |
|
if (gps.ground_speed() < 1) { |
|
steerController.reset_I(); |
|
} |
|
} |
|
} |
|
|
|
|
|
void Plane::calc_throttle() |
|
{ |
|
if (aparm.throttle_cruise <= 1) { |
|
// user has asked for zero throttle - this may be done by a |
|
// mission which wants to turn off the engine for a parachute |
|
// landing |
|
channel_throttle->set_servo_out(0); |
|
return; |
|
} |
|
|
|
channel_throttle->set_servo_out(SpdHgt_Controller->get_throttle_demand()); |
|
} |
|
|
|
/***************************************** |
|
* Calculate desired roll/pitch/yaw angles (in medium freq loop) |
|
*****************************************/ |
|
|
|
/* |
|
calculate yaw control for coordinated flight |
|
*/ |
|
void Plane::calc_nav_yaw_coordinated(float speed_scaler) |
|
{ |
|
bool disable_integrator = false; |
|
if (control_mode == STABILIZE && rudder_input != 0) { |
|
disable_integrator = true; |
|
} |
|
steering_control.rudder = yawController.get_servo_out(speed_scaler, disable_integrator); |
|
|
|
// add in rudder mixing from roll |
|
steering_control.rudder += channel_roll->get_servo_out() * g.kff_rudder_mix; |
|
steering_control.rudder += rudder_input; |
|
steering_control.rudder = constrain_int16(steering_control.rudder, -4500, 4500); |
|
} |
|
|
|
/* |
|
calculate yaw control for ground steering with specific course |
|
*/ |
|
void Plane::calc_nav_yaw_course(void) |
|
{ |
|
// holding a specific navigation course on the ground. Used in |
|
// auto-takeoff and landing |
|
int32_t bearing_error_cd = nav_controller->bearing_error_cd(); |
|
steering_control.steering = steerController.get_steering_out_angle_error(bearing_error_cd); |
|
if (stick_mixing_enabled()) { |
|
stick_mix_channel(channel_rudder, steering_control.steering); |
|
} |
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500); |
|
} |
|
|
|
/* |
|
calculate yaw control for ground steering |
|
*/ |
|
void Plane::calc_nav_yaw_ground(void) |
|
{ |
|
if (gps.ground_speed() < 1 && |
|
channel_throttle->get_control_in() == 0 && |
|
flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF && |
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
|
// manual rudder control while still |
|
steer_state.locked_course = false; |
|
steer_state.locked_course_err = 0; |
|
steering_control.steering = rudder_input; |
|
return; |
|
} |
|
|
|
float steer_rate = (rudder_input/4500.0f) * g.ground_steer_dps; |
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || |
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
|
steer_rate = 0; |
|
} |
|
if (!is_zero(steer_rate)) { |
|
// pilot is giving rudder input |
|
steer_state.locked_course = false; |
|
} else if (!steer_state.locked_course) { |
|
// pilot has released the rudder stick or we are still - lock the course |
|
steer_state.locked_course = true; |
|
if (flight_stage != AP_SpdHgtControl::FLIGHT_TAKEOFF && |
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
|
steer_state.locked_course_err = 0; |
|
} |
|
} |
|
if (!steer_state.locked_course) { |
|
// use a rate controller at the pilot specified rate |
|
steering_control.steering = steerController.get_steering_out_rate(steer_rate); |
|
} else { |
|
// use a error controller on the summed error |
|
int32_t yaw_error_cd = -ToDeg(steer_state.locked_course_err)*100; |
|
steering_control.steering = steerController.get_steering_out_angle_error(yaw_error_cd); |
|
} |
|
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500); |
|
} |
|
|
|
|
|
/* |
|
calculate a new nav_pitch_cd from the speed height controller |
|
*/ |
|
void Plane::calc_nav_pitch() |
|
{ |
|
// Calculate the Pitch of the plane |
|
// -------------------------------- |
|
nav_pitch_cd = SpdHgt_Controller->get_pitch_demand(); |
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get()); |
|
} |
|
|
|
|
|
/* |
|
calculate a new nav_roll_cd from the navigation controller |
|
*/ |
|
void Plane::calc_nav_roll() |
|
{ |
|
nav_roll_cd = constrain_int32(nav_controller->nav_roll_cd(), -roll_limit_cd, roll_limit_cd); |
|
update_load_factor(); |
|
} |
|
|
|
|
|
/***************************************** |
|
* Throttle slew limit |
|
*****************************************/ |
|
void Plane::throttle_slew_limit(int16_t last_throttle) |
|
{ |
|
uint8_t slewrate = aparm.throttle_slewrate; |
|
if (control_mode==AUTO) { |
|
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) { |
|
slewrate = g.takeoff_throttle_slewrate; |
|
} else if (g.land_throttle_slewrate != 0 && |
|
(flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_PREFLARE)) { |
|
slewrate = g.land_throttle_slewrate; |
|
} |
|
} |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (slewrate) { |
|
// limit throttle change by the given percentage per second |
|
float temp = slewrate * G_Dt * 0.01f * fabsf(channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); |
|
// allow a minimum change of 1 PWM per cycle |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
channel_throttle->set_radio_out(constrain_int16(channel_throttle->get_radio_out(), last_throttle - temp, last_throttle + temp)); |
|
} |
|
} |
|
|
|
/***************************************** |
|
Flap slew limit |
|
*****************************************/ |
|
void Plane::flap_slew_limit(int8_t &last_value, int8_t &new_value) |
|
{ |
|
uint8_t slewrate = g.flap_slewrate; |
|
// if slew limit rate is set to zero then do not slew limit |
|
if (slewrate) { |
|
// limit flap change by the given percentage per second |
|
float temp = slewrate * G_Dt; |
|
// allow a minimum change of 1% per cycle. This means the |
|
// slowest flaps we can do is full change over 2 seconds |
|
if (temp < 1) { |
|
temp = 1; |
|
} |
|
new_value = constrain_int16(new_value, last_value - temp, last_value + temp); |
|
} |
|
last_value = new_value; |
|
} |
|
|
|
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode. |
|
|
|
Disable throttle if following conditions are met: |
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher |
|
* AND |
|
* 2 - Our reported altitude is within 10 meters of the home altitude. |
|
* 3 - Our reported speed is under 5 meters per second. |
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached |
|
* OR |
|
* 5 - Home location is not set |
|
*/ |
|
bool Plane::suppress_throttle(void) |
|
{ |
|
if (auto_throttle_mode && parachute.release_initiated()) { |
|
// throttle always suppressed in auto-throttle modes after parachute release initiated |
|
throttle_suppressed = true; |
|
return true; |
|
} |
|
|
|
if (!throttle_suppressed) { |
|
// we've previously met a condition for unsupressing the throttle |
|
return false; |
|
} |
|
if (!auto_throttle_mode) { |
|
// the user controls the throttle |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
|
|
if (control_mode==AUTO && g.auto_fbw_steer == 42) { |
|
// user has throttle control |
|
return false; |
|
} |
|
|
|
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5); |
|
|
|
if (control_mode==AUTO && |
|
auto_state.takeoff_complete == false) { |
|
|
|
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000; |
|
if (is_flying() && |
|
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode |
|
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home |
|
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch |
|
gps_movement) { // definate gps movement |
|
// we're already flying, do not suppress the throttle. We can get |
|
// stuck in this condition if we reset a mission and cmd 1 is takeoff |
|
// but we're currently flying around below the takeoff altitude |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
if (auto_takeoff_check()) { |
|
// we're in auto takeoff |
|
throttle_suppressed = false; |
|
auto_state.baro_takeoff_alt = barometer.get_altitude(); |
|
return false; |
|
} |
|
// keep throttle suppressed |
|
return true; |
|
} |
|
|
|
if (relative_altitude_abs_cm() >= 1000) { |
|
// we're more than 10m from the home altitude |
|
throttle_suppressed = false; |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Throttle enabled. Altitude %.2f", |
|
(double)(relative_altitude_abs_cm()*0.01f)); |
|
return false; |
|
} |
|
|
|
if (gps_movement) { |
|
// if we have an airspeed sensor, then check it too, and |
|
// require 5m/s. This prevents throttle up due to spiky GPS |
|
// groundspeed with bad GPS reception |
|
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) { |
|
// we're moving at more than 5 m/s |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Throttle enabled. Speed %.2f airspeed %.2f", |
|
(double)gps.ground_speed(), |
|
(double)airspeed.get_airspeed()); |
|
throttle_suppressed = false; |
|
return false; |
|
} |
|
} |
|
|
|
if (quadplane.is_flying()) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Throttle enabled VTOL"); |
|
throttle_suppressed = false; |
|
} |
|
|
|
// throttle remains suppressed |
|
return true; |
|
} |
|
|
|
/* |
|
implement a software VTail or elevon mixer. There are 4 different mixing modes |
|
*/ |
|
void Plane::channel_output_mixer(uint8_t mixing_type, int16_t & chan1_out, int16_t & chan2_out)const |
|
{ |
|
int16_t c1, c2; |
|
int16_t v1, v2; |
|
|
|
// first get desired elevator and rudder as -500..500 values |
|
c1 = chan1_out - 1500; |
|
c2 = chan2_out - 1500; |
|
|
|
v1 = (c1 - c2) * g.mixing_gain; |
|
v2 = (c1 + c2) * g.mixing_gain; |
|
|
|
// now map to mixed output |
|
switch (mixing_type) { |
|
case MIXING_DISABLED: |
|
return; |
|
|
|
case MIXING_UPUP: |
|
break; |
|
|
|
case MIXING_UPDN: |
|
v2 = -v2; |
|
break; |
|
|
|
case MIXING_DNUP: |
|
v1 = -v1; |
|
break; |
|
|
|
case MIXING_DNDN: |
|
v1 = -v1; |
|
v2 = -v2; |
|
break; |
|
} |
|
|
|
// scale for a 1500 center and 900..2100 range, symmetric |
|
v1 = constrain_int16(v1, -600, 600); |
|
v2 = constrain_int16(v2, -600, 600); |
|
|
|
chan1_out = 1500 + v1; |
|
chan2_out = 1500 + v2; |
|
} |
|
|
|
void Plane::channel_output_mixer(uint8_t mixing_type, RC_Channel* chan1, RC_Channel* chan2)const |
|
{ |
|
int16_t ch1 = chan1->get_radio_out(); |
|
int16_t ch2 = chan2->get_radio_out(); |
|
|
|
channel_output_mixer(mixing_type,ch1,ch2); |
|
|
|
chan1->set_radio_out(ch1); |
|
chan2->set_radio_out(ch2); |
|
} |
|
|
|
/* |
|
setup flaperon output channels |
|
*/ |
|
void Plane::flaperon_update(int8_t flap_percent) |
|
{ |
|
if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon1) || |
|
!RC_Channel_aux::function_assigned(RC_Channel_aux::k_flaperon2)) { |
|
return; |
|
} |
|
int16_t ch1, ch2; |
|
/* |
|
flaperons are implemented as a mixer between aileron and a |
|
percentage of flaps. Flap input can come from a manual channel |
|
or from auto flaps. |
|
|
|
Use k_flaperon1 and k_flaperon2 channel trims to center servos. |
|
Then adjust aileron trim for level flight (note that aileron trim is affected |
|
by mixing gain). flapin_channel's trim is not used. |
|
*/ |
|
|
|
ch1 = channel_roll->get_radio_out(); |
|
// The *5 is to take a percentage to a value from -500 to 500 for the mixer |
|
ch2 = 1500 - flap_percent * 5; |
|
channel_output_mixer(g.flaperon_output, ch1, ch2); |
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon1, ch1); |
|
RC_Channel_aux::set_radio_trimmed(RC_Channel_aux::k_flaperon2, ch2); |
|
} |
|
|
|
/* |
|
setup servos for idle mode |
|
Idle mode is used during balloon launch to keep servos still, apart |
|
from occasional wiggle to prevent freezing up |
|
*/ |
|
void Plane::set_servos_idle(void) |
|
{ |
|
RC_Channel_aux::output_ch_all(); |
|
if (auto_state.idle_wiggle_stage == 0) { |
|
RC_Channel::output_trim_all(); |
|
return; |
|
} |
|
int16_t servo_value = 0; |
|
// move over full range for 2 seconds |
|
auto_state.idle_wiggle_stage += 2; |
|
if (auto_state.idle_wiggle_stage < 50) { |
|
servo_value = auto_state.idle_wiggle_stage * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 100) { |
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 150) { |
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50); |
|
} else if (auto_state.idle_wiggle_stage < 200) { |
|
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50); |
|
} else { |
|
auto_state.idle_wiggle_stage = 0; |
|
} |
|
channel_roll->set_servo_out(servo_value); |
|
channel_pitch->set_servo_out(servo_value); |
|
channel_rudder->set_servo_out(servo_value); |
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
channel_rudder->calc_pwm(); |
|
channel_roll->output(); |
|
channel_pitch->output(); |
|
channel_throttle->output(); |
|
channel_rudder->output(); |
|
channel_throttle->output_trim(); |
|
} |
|
|
|
/* |
|
return minimum throttle PWM value, taking account of throttle reversal. For reverse thrust you get the throttle off position |
|
*/ |
|
uint16_t Plane::throttle_min(void) const |
|
{ |
|
if (aparm.throttle_min < 0) { |
|
return channel_throttle->get_radio_trim(); |
|
} |
|
return channel_throttle->get_reverse() ? channel_throttle->get_radio_max() : channel_throttle->get_radio_min(); |
|
}; |
|
|
|
|
|
/***************************************** |
|
* Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
void Plane::set_servos(void) |
|
{ |
|
int16_t last_throttle = channel_throttle->get_radio_out(); |
|
|
|
// do any transition updates for quadplane |
|
quadplane.update(); |
|
|
|
if (control_mode == AUTO && auto_state.idle_mode) { |
|
// special handling for balloon launch |
|
set_servos_idle(); |
|
return; |
|
} |
|
|
|
/* |
|
see if we are doing ground steering. |
|
*/ |
|
if (!steering_control.ground_steering) { |
|
// we are not at an altitude for ground steering. Set the nose |
|
// wheel to the rudder just in case the barometer has drifted |
|
// a lot |
|
steering_control.steering = steering_control.rudder; |
|
} else if (!RC_Channel_aux::function_assigned(RC_Channel_aux::k_steering)) { |
|
// we are within the ground steering altitude but don't have a |
|
// dedicated steering channel. Set the rudder to the ground |
|
// steering output |
|
steering_control.rudder = steering_control.steering; |
|
} |
|
channel_rudder->set_servo_out(steering_control.rudder); |
|
|
|
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run |
|
steering_control.ground_steering = false; |
|
|
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_rudder, steering_control.rudder); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_steering, steering_control.steering); |
|
|
|
if (control_mode == MANUAL) { |
|
// do a direct pass through of radio values |
|
if (g.mix_mode == 0 || g.elevon_output != MIXING_DISABLED) { |
|
channel_roll->set_radio_out(channel_roll->get_radio_in()); |
|
channel_pitch->set_radio_out(channel_pitch->get_radio_in()); |
|
} else { |
|
channel_roll->set_radio_out(channel_roll->read()); |
|
channel_pitch->set_radio_out(channel_pitch->read()); |
|
} |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
|
|
|
// setup extra channels. We want this to come from the |
|
// main input channel, but using the 2nd channels dead |
|
// zone, reverse and min/max settings. We need to use |
|
// pwm_to_angle_dz() to ensure we don't trim the value for the |
|
// deadzone of the main aileron channel, otherwise the 2nd |
|
// aileron won't quite follow the first one |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->pwm_to_angle_dz(0)); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->pwm_to_angle_dz(0)); |
|
|
|
// this variant assumes you have the corresponding |
|
// input channel setup in your transmitter for manual control |
|
// of the 2nd aileron |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_aileron_with_input); |
|
RC_Channel_aux::copy_radio_in_out(RC_Channel_aux::k_elevator_with_input); |
|
|
|
if (g.mix_mode == 0 && g.elevon_output == MIXING_DISABLED) { |
|
// set any differential spoilers to follow the elevons in |
|
// manual mode. |
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler1, channel_roll->get_radio_out()); |
|
RC_Channel_aux::set_radio(RC_Channel_aux::k_dspoiler2, channel_pitch->get_radio_out()); |
|
} |
|
} else { |
|
if (g.mix_mode == 0) { |
|
// both types of secondary aileron are slaved to the roll servo out |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron, channel_roll->get_servo_out()); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_aileron_with_input, channel_roll->get_servo_out()); |
|
|
|
// both types of secondary elevator are slaved to the pitch servo out |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator, channel_pitch->get_servo_out()); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_elevator_with_input, channel_pitch->get_servo_out()); |
|
}else{ |
|
/*Elevon mode*/ |
|
float ch1; |
|
float ch2; |
|
ch1 = channel_pitch->get_servo_out() - (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
|
ch2 = channel_pitch->get_servo_out() + (BOOL_TO_SIGN(g.reverse_elevons) * channel_roll->get_servo_out()); |
|
|
|
/* Differential Spoilers |
|
If differential spoilers are setup, then we translate |
|
rudder control into splitting of the two ailerons on |
|
the side of the aircraft where we want to induce |
|
additional drag. |
|
*/ |
|
if (RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler1) && RC_Channel_aux::function_assigned(RC_Channel_aux::k_dspoiler2)) { |
|
float ch3 = ch1; |
|
float ch4 = ch2; |
|
if ( BOOL_TO_SIGN(g.reverse_elevons) * channel_rudder->get_servo_out() < 0) { |
|
ch1 += abs(channel_rudder->get_servo_out()); |
|
ch3 -= abs(channel_rudder->get_servo_out()); |
|
} else { |
|
ch2 += abs(channel_rudder->get_servo_out()); |
|
ch4 -= abs(channel_rudder->get_servo_out()); |
|
} |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler1, ch3); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_dspoiler2, ch4); |
|
} |
|
|
|
// directly set the radio_out values for elevon mode |
|
channel_roll->set_radio_out(elevon.trim1 + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0f/ SERVO_MAX))); |
|
channel_pitch->set_radio_out(elevon.trim2 + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0f/ SERVO_MAX))); |
|
} |
|
|
|
// push out the PWM values |
|
if (g.mix_mode == 0) { |
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
} |
|
channel_rudder->calc_pwm(); |
|
|
|
#if THROTTLE_OUT == 0 |
|
channel_throttle->set_servo_out(0); |
|
#else |
|
// convert 0 to 100% (or -100 to +100) into PWM |
|
int8_t min_throttle = aparm.throttle_min.get(); |
|
int8_t max_throttle = aparm.throttle_max.get(); |
|
|
|
if (min_throttle < 0 && !allow_reverse_thrust()) { |
|
// reverse thrust is available but inhibited. |
|
min_throttle = 0; |
|
} |
|
|
|
if (control_mode == AUTO) { |
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_FINAL) { |
|
min_throttle = 0; |
|
} |
|
|
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_TAKEOFF || flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT) { |
|
if(aparm.takeoff_throttle_max != 0) { |
|
max_throttle = aparm.takeoff_throttle_max; |
|
} else { |
|
max_throttle = aparm.throttle_max; |
|
} |
|
} |
|
} |
|
|
|
uint32_t now = millis(); |
|
if (battery.overpower_detected()) { |
|
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value |
|
// throttle limit will attack by 10% per second |
|
|
|
if (channel_throttle->get_servo_out() > 0 && // demanding too much positive thrust |
|
throttle_watt_limit_max < max_throttle - 25 && |
|
now - throttle_watt_limit_timer_ms >= 1) { |
|
// always allow for 25% throttle available regardless of battery status |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_max++; |
|
|
|
} else if (channel_throttle->get_servo_out() < 0 && |
|
min_throttle < 0 && // reverse thrust is available |
|
throttle_watt_limit_min < -(min_throttle) - 25 && |
|
now - throttle_watt_limit_timer_ms >= 1) { |
|
// always allow for 25% throttle available regardless of battery status |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_min++; |
|
} |
|
|
|
} else if (now - throttle_watt_limit_timer_ms >= 1000) { |
|
// it has been 1 second since last over-current, check if we can resume higher throttle. |
|
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down |
|
// throttle limit will release by 1% per second |
|
if (channel_throttle->get_servo_out() > throttle_watt_limit_max && // demanding max forward thrust |
|
throttle_watt_limit_max > 0) { // and we're currently limiting it |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_max--; |
|
|
|
} else if (channel_throttle->get_servo_out() < throttle_watt_limit_min && // demanding max negative thrust |
|
throttle_watt_limit_min > 0) { // and we're limiting it |
|
throttle_watt_limit_timer_ms = now; |
|
throttle_watt_limit_min--; |
|
} |
|
} |
|
|
|
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max); |
|
if (min_throttle < 0) { |
|
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0); |
|
} |
|
|
|
channel_throttle->set_servo_out(constrain_int16(channel_throttle->get_servo_out(), |
|
min_throttle, |
|
max_throttle)); |
|
|
|
if (!hal.util->get_soft_armed()) { |
|
channel_throttle->set_servo_out(0); |
|
channel_throttle->calc_pwm(); |
|
} else if (suppress_throttle()) { |
|
// throttle is suppressed in auto mode |
|
channel_throttle->set_servo_out(0); |
|
if (g.throttle_suppress_manual) { |
|
// manual pass through of throttle while throttle is suppressed |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else { |
|
channel_throttle->calc_pwm(); |
|
} |
|
} else if (g.throttle_passthru_stabilize && |
|
(control_mode == STABILIZE || |
|
control_mode == TRAINING || |
|
control_mode == ACRO || |
|
control_mode == FLY_BY_WIRE_A || |
|
control_mode == AUTOTUNE)) { |
|
// manual pass through of throttle while in FBWA or |
|
// STABILIZE mode with THR_PASS_STAB set |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else if (control_mode == GUIDED && |
|
guided_throttle_passthru) { |
|
// manual pass through of throttle while in GUIDED |
|
channel_throttle->set_radio_out(channel_throttle->get_radio_in()); |
|
} else if (quadplane.in_vtol_mode()) { |
|
// ask quadplane code for forward throttle |
|
channel_throttle->set_servo_out(quadplane.forward_throttle_pct()); |
|
channel_throttle->calc_pwm(); |
|
} else { |
|
// normal throttle calculation based on servo_out |
|
channel_throttle->calc_pwm(); |
|
} |
|
#endif |
|
} |
|
|
|
// Auto flap deployment |
|
int8_t auto_flap_percent = 0; |
|
int8_t manual_flap_percent = 0; |
|
static int8_t last_auto_flap; |
|
static int8_t last_manual_flap; |
|
|
|
// work out any manual flap input |
|
RC_Channel *flapin = RC_Channel::rc_channel(g.flapin_channel-1); |
|
if (flapin != NULL && !failsafe.ch3_failsafe && failsafe.ch3_counter == 0) { |
|
flapin->input(); |
|
manual_flap_percent = flapin->percent_input(); |
|
} |
|
|
|
if (auto_throttle_mode) { |
|
int16_t flapSpeedSource = 0; |
|
if (ahrs.airspeed_sensor_enabled()) { |
|
flapSpeedSource = target_airspeed_cm * 0.01f; |
|
} else { |
|
flapSpeedSource = aparm.throttle_cruise; |
|
} |
|
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) { |
|
auto_flap_percent = g.flap_2_percent; |
|
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) { |
|
auto_flap_percent = g.flap_1_percent; |
|
} //else flaps stay at default zero deflection |
|
|
|
/* |
|
special flap levels for takeoff and landing. This works |
|
better than speed based flaps as it leads to less |
|
possibility of oscillation |
|
*/ |
|
if (control_mode == AUTO) { |
|
switch (flight_stage) { |
|
case AP_SpdHgtControl::FLIGHT_TAKEOFF: |
|
case AP_SpdHgtControl::FLIGHT_LAND_ABORT: |
|
if (g.takeoff_flap_percent != 0) { |
|
auto_flap_percent = g.takeoff_flap_percent; |
|
} |
|
break; |
|
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH: |
|
case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE: |
|
case AP_SpdHgtControl::FLIGHT_LAND_FINAL: |
|
if (g.land_flap_percent != 0) { |
|
auto_flap_percent = g.land_flap_percent; |
|
} |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// manual flap input overrides auto flap input |
|
if (abs(manual_flap_percent) > auto_flap_percent) { |
|
auto_flap_percent = manual_flap_percent; |
|
} |
|
|
|
flap_slew_limit(last_auto_flap, auto_flap_percent); |
|
flap_slew_limit(last_manual_flap, manual_flap_percent); |
|
|
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap_auto, auto_flap_percent); |
|
RC_Channel_aux::set_servo_out_for(RC_Channel_aux::k_flap, manual_flap_percent); |
|
|
|
if (control_mode >= FLY_BY_WIRE_B || |
|
quadplane.in_assisted_flight() || |
|
quadplane.in_vtol_mode()) { |
|
/* only do throttle slew limiting in modes where throttle |
|
* control is automatic */ |
|
throttle_slew_limit(last_throttle); |
|
} |
|
|
|
if (control_mode == TRAINING) { |
|
// copy rudder in training mode |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_in()); |
|
} |
|
|
|
if (g.flaperon_output != MIXING_DISABLED && g.elevon_output == MIXING_DISABLED && g.mix_mode == 0) { |
|
flaperon_update(auto_flap_percent); |
|
} |
|
if (g.vtail_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.vtail_output, channel_pitch, channel_rudder); |
|
} else if (g.elevon_output != MIXING_DISABLED) { |
|
channel_output_mixer(g.elevon_output, channel_pitch, channel_roll); |
|
} |
|
|
|
if (!arming.is_armed()) { |
|
//Some ESCs get noisy (beep error msgs) if PWM == 0. |
|
//This little segment aims to avoid this. |
|
switch (arming.arming_required()) { |
|
case AP_Arming::NO: |
|
//keep existing behavior: do nothing to radio_out |
|
//(don't disarm throttle channel even if AP_Arming class is) |
|
break; |
|
|
|
case AP_Arming::YES_ZERO_PWM: |
|
channel_throttle->set_radio_out(0); |
|
break; |
|
|
|
case AP_Arming::YES_MIN_PWM: |
|
default: |
|
channel_throttle->set_radio_out(throttle_min()); |
|
break; |
|
} |
|
} |
|
|
|
#if OBC_FAILSAFE == ENABLED |
|
// this is to allow the failsafe module to deliberately crash |
|
// the plane. Only used in extreme circumstances to meet the |
|
// OBC rules |
|
obc.check_crash_plane(); |
|
#endif |
|
|
|
#if HIL_SUPPORT |
|
if (g.hil_mode == 1) { |
|
// get the servos to the GCS immediately for HIL |
|
if (comm_get_txspace(MAVLINK_COMM_0) >= |
|
MAVLINK_MSG_ID_RC_CHANNELS_SCALED_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES) { |
|
send_servo_out(MAVLINK_COMM_0); |
|
} |
|
if (!g.hil_servos) { |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (g.land_then_servos_neutral > 0 && |
|
control_mode == AUTO && |
|
g.land_disarm_delay > 0 && |
|
auto_state.land_complete && |
|
!arming.is_armed()) { |
|
// after an auto land and auto disarm, set the servos to be neutral just |
|
// in case we're upside down or some crazy angle and straining the servos. |
|
if (g.land_then_servos_neutral == 1) { |
|
channel_roll->set_radio_out(channel_roll->get_radio_trim()); |
|
channel_pitch->set_radio_out(channel_pitch->get_radio_trim()); |
|
channel_rudder->set_radio_out(channel_rudder->get_radio_trim()); |
|
} else if (g.land_then_servos_neutral == 2) { |
|
channel_roll->disable_out(); |
|
channel_pitch->disable_out(); |
|
channel_rudder->disable_out(); |
|
} |
|
} |
|
|
|
// send values to the PWM timers for output |
|
// ---------------------------------------- |
|
if (g.rudder_only == 0) { |
|
// when we RUDDER_ONLY mode we don't send the channel_roll |
|
// output and instead rely on KFF_RDDRMIX. That allows the yaw |
|
// damper to operate. |
|
channel_roll->output(); |
|
} |
|
channel_pitch->output(); |
|
channel_throttle->output(); |
|
channel_rudder->output(); |
|
RC_Channel_aux::output_ch_all(); |
|
} |
|
|
|
bool Plane::allow_reverse_thrust(void) |
|
{ |
|
// check if we should allow reverse thrust |
|
bool allow = false; |
|
|
|
if (g.use_reverse_thrust == USE_REVERSE_THRUST_NEVER) { |
|
return false; |
|
} |
|
|
|
switch (control_mode) { |
|
case AUTO: |
|
{ |
|
uint16_t nav_cmd = mission.get_current_nav_cmd().id; |
|
|
|
// never allow reverse thrust during takeoff |
|
if (nav_cmd == MAV_CMD_NAV_TAKEOFF) { |
|
return false; |
|
} |
|
|
|
// always allow regardless of mission item |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_ALWAYS); |
|
|
|
// landing |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LAND_APPROACH) && |
|
(nav_cmd == MAV_CMD_NAV_LAND); |
|
|
|
// LOITER_TO_ALT |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LOITER_TO_ALT) && |
|
(nav_cmd == MAV_CMD_NAV_LOITER_TO_ALT); |
|
|
|
// any Loiter (including LOITER_TO_ALT) |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_LOITER_ALL) && |
|
(nav_cmd == MAV_CMD_NAV_LOITER_TIME || |
|
nav_cmd == MAV_CMD_NAV_LOITER_TO_ALT || |
|
nav_cmd == MAV_CMD_NAV_LOITER_TURNS || |
|
nav_cmd == MAV_CMD_NAV_LOITER_UNLIM); |
|
|
|
// waypoints |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_AUTO_WAYPOINT) && |
|
(nav_cmd == MAV_CMD_NAV_WAYPOINT || |
|
nav_cmd == MAV_CMD_NAV_SPLINE_WAYPOINT); |
|
} |
|
break; |
|
|
|
case LOITER: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_LOITER); |
|
break; |
|
case RTL: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_RTL); |
|
break; |
|
case CIRCLE: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_CIRCLE); |
|
break; |
|
case CRUISE: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_CRUISE); |
|
break; |
|
case FLY_BY_WIRE_B: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_FBWB); |
|
break; |
|
case GUIDED: |
|
allow |= (g.use_reverse_thrust & USE_REVERSE_THRUST_GUIDED); |
|
break; |
|
default: |
|
// all other control_modes are auto_throttle_mode=false. |
|
// If we are not controlling throttle, don't limit it. |
|
allow = true; |
|
break; |
|
} |
|
|
|
return allow; |
|
} |
|
|
|
void Plane::demo_servos(uint8_t i) |
|
{ |
|
while(i > 0) { |
|
gcs_send_text(MAV_SEVERITY_INFO,"Demo servos"); |
|
demoing_servos = true; |
|
servo_write(1, 1400); |
|
hal.scheduler->delay(400); |
|
servo_write(1, 1600); |
|
hal.scheduler->delay(200); |
|
servo_write(1, 1500); |
|
demoing_servos = false; |
|
hal.scheduler->delay(400); |
|
i--; |
|
} |
|
} |
|
|
|
/* |
|
adjust nav_pitch_cd for STAB_PITCH_DOWN_CD. This is used to make |
|
keeping up good airspeed in FBWA mode easier, as the plane will |
|
automatically pitch down a little when at low throttle. It makes |
|
FBWA landings without stalling much easier. |
|
*/ |
|
void Plane::adjust_nav_pitch_throttle(void) |
|
{ |
|
int8_t throttle = throttle_percentage(); |
|
if (throttle >= 0 && throttle < aparm.throttle_cruise && flight_stage != AP_SpdHgtControl::FLIGHT_VTOL) { |
|
float p = (aparm.throttle_cruise - throttle) / (float)aparm.throttle_cruise; |
|
nav_pitch_cd -= g.stab_pitch_down * 100.0f * p; |
|
} |
|
} |
|
|
|
|
|
/* |
|
calculate a new aerodynamic_load_factor and limit nav_roll_cd to |
|
ensure that the load factor does not take us below the sustainable |
|
airspeed |
|
*/ |
|
void Plane::update_load_factor(void) |
|
{ |
|
float demanded_roll = fabsf(nav_roll_cd*0.01f); |
|
if (demanded_roll > 85) { |
|
// limit to 85 degrees to prevent numerical errors |
|
demanded_roll = 85; |
|
} |
|
aerodynamic_load_factor = 1.0f / safe_sqrt(cosf(radians(demanded_roll))); |
|
|
|
if (!aparm.stall_prevention) { |
|
// stall prevention is disabled |
|
return; |
|
} |
|
if (fly_inverted()) { |
|
// no roll limits when inverted |
|
return; |
|
} |
|
|
|
float max_load_factor = smoothed_airspeed / aparm.airspeed_min; |
|
if (max_load_factor <= 1) { |
|
// our airspeed is below the minimum airspeed. Limit roll to |
|
// 25 degrees |
|
nav_roll_cd = constrain_int32(nav_roll_cd, -2500, 2500); |
|
roll_limit_cd = constrain_int32(roll_limit_cd, -2500, 2500); |
|
} else if (max_load_factor < aerodynamic_load_factor) { |
|
// the demanded nav_roll would take us past the aerodymamic |
|
// load limit. Limit our roll to a bank angle that will keep |
|
// the load within what the airframe can handle. We always |
|
// allow at least 25 degrees of roll however, to ensure the |
|
// aircraft can be maneuvered with a bad airspeed estimate. At |
|
// 25 degrees the load factor is 1.1 (10%) |
|
int32_t roll_limit = degrees(acosf(sq(1.0f / max_load_factor)))*100; |
|
if (roll_limit < 2500) { |
|
roll_limit = 2500; |
|
} |
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit, roll_limit); |
|
roll_limit_cd = constrain_int32(roll_limit_cd, -roll_limit, roll_limit); |
|
} |
|
}
|
|
|