You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
16 KiB
433 lines
16 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#pragma once |
|
|
|
// Gyro and Accelerometer calibration criteria |
|
#define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f |
|
#define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f |
|
#define AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS (15.5f*GRAVITY_MSS) // accelerometer values over 15.5G are recorded as a clipping error |
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz |
|
#define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz |
|
#define AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS 500 // peak-hold detector timeout |
|
|
|
/** |
|
maximum number of INS instances available on this platform. If more |
|
than 1 then redundant sensors may be available |
|
*/ |
|
#define INS_MAX_INSTANCES 3 |
|
#define INS_MAX_BACKENDS 6 |
|
#define INS_VIBRATION_CHECK_INSTANCES 2 |
|
|
|
#include <stdint.h> |
|
|
|
#include <AP_AccelCal/AP_AccelCal.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <Filter/LowPassFilter2p.h> |
|
#include <Filter/LowPassFilter.h> |
|
|
|
class AP_InertialSensor_Backend; |
|
class AuxiliaryBus; |
|
|
|
/* |
|
forward declare DataFlash class. We can't include DataFlash.h |
|
because of mutual dependencies |
|
*/ |
|
class DataFlash_Class; |
|
|
|
/* AP_InertialSensor is an abstraction for gyro and accel measurements |
|
* which are correctly aligned to the body axes and scaled to SI units. |
|
* |
|
* Gauss-Newton accel calibration routines borrowed from Rolfe Schmidt |
|
* blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
* original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
*/ |
|
class AP_InertialSensor : AP_AccelCal_Client |
|
{ |
|
friend class AP_InertialSensor_Backend; |
|
|
|
public: |
|
AP_InertialSensor(); |
|
|
|
static AP_InertialSensor *get_instance(); |
|
|
|
enum Gyro_Calibration_Timing { |
|
GYRO_CAL_NEVER = 0, |
|
GYRO_CAL_STARTUP_ONLY = 1 |
|
}; |
|
|
|
/// Perform startup initialisation. |
|
/// |
|
/// Called to initialise the state of the IMU. |
|
/// |
|
/// Gyros will be calibrated unless INS_GYRO_CAL is zero |
|
/// |
|
/// @param style The initialisation startup style. |
|
/// |
|
void init(uint16_t sample_rate_hz); |
|
|
|
/// Register a new gyro/accel driver, allocating an instance |
|
/// number |
|
uint8_t register_gyro(uint16_t raw_sample_rate_hz); |
|
uint8_t register_accel(uint16_t raw_sample_rate_hz); |
|
|
|
bool calibrate_trim(float &trim_roll, float &trim_pitch); |
|
|
|
/// calibrating - returns true if the gyros or accels are currently being calibrated |
|
bool calibrating() const { return _calibrating; } |
|
|
|
/// Perform cold-start initialisation for just the gyros. |
|
/// |
|
/// @note This should not be called unless ::init has previously |
|
/// been called, as ::init may perform other work |
|
/// |
|
void init_gyro(void); |
|
|
|
/// Fetch the current gyro values |
|
/// |
|
/// @returns vector of rotational rates in radians/sec |
|
/// |
|
const Vector3f &get_gyro(uint8_t i) const { return _gyro[i]; } |
|
const Vector3f &get_gyro(void) const { return get_gyro(_primary_gyro); } |
|
|
|
// set gyro offsets in radians/sec |
|
const Vector3f &get_gyro_offsets(uint8_t i) const { return _gyro_offset[i]; } |
|
const Vector3f &get_gyro_offsets(void) const { return get_gyro_offsets(_primary_gyro); } |
|
|
|
//get delta angle if available |
|
bool get_delta_angle(uint8_t i, Vector3f &delta_angle) const; |
|
bool get_delta_angle(Vector3f &delta_angle) const { return get_delta_angle(_primary_gyro, delta_angle); } |
|
|
|
float get_delta_angle_dt(uint8_t i) const; |
|
float get_delta_angle_dt() const { return get_delta_angle_dt(_primary_accel); } |
|
|
|
//get delta velocity if available |
|
bool get_delta_velocity(uint8_t i, Vector3f &delta_velocity) const; |
|
bool get_delta_velocity(Vector3f &delta_velocity) const { return get_delta_velocity(_primary_accel, delta_velocity); } |
|
|
|
float get_delta_velocity_dt(uint8_t i) const; |
|
float get_delta_velocity_dt() const { return get_delta_velocity_dt(_primary_accel); } |
|
|
|
/// Fetch the current accelerometer values |
|
/// |
|
/// @returns vector of current accelerations in m/s/s |
|
/// |
|
const Vector3f &get_accel(uint8_t i) const { return _accel[i]; } |
|
const Vector3f &get_accel(void) const { return get_accel(_primary_accel); } |
|
|
|
uint32_t get_gyro_error_count(uint8_t i) const { return _gyro_error_count[i]; } |
|
uint32_t get_accel_error_count(uint8_t i) const { return _accel_error_count[i]; } |
|
|
|
// multi-device interface |
|
bool get_gyro_health(uint8_t instance) const { return (instance<_gyro_count) ? _gyro_healthy[instance] : false; } |
|
bool get_gyro_health(void) const { return get_gyro_health(_primary_gyro); } |
|
bool get_gyro_health_all(void) const; |
|
uint8_t get_gyro_count(void) const { return _gyro_count; } |
|
bool gyro_calibrated_ok(uint8_t instance) const { return _gyro_cal_ok[instance]; } |
|
bool gyro_calibrated_ok_all() const; |
|
bool use_gyro(uint8_t instance) const; |
|
Gyro_Calibration_Timing gyro_calibration_timing() { return (Gyro_Calibration_Timing)_gyro_cal_timing.get(); } |
|
|
|
bool get_accel_health(uint8_t instance) const { return (instance<_accel_count) ? _accel_healthy[instance] : false; } |
|
bool get_accel_health(void) const { return get_accel_health(_primary_accel); } |
|
bool get_accel_health_all(void) const; |
|
uint8_t get_accel_count(void) const { return _accel_count; }; |
|
bool accel_calibrated_ok_all() const; |
|
bool use_accel(uint8_t instance) const; |
|
|
|
// get accel offsets in m/s/s |
|
const Vector3f &get_accel_offsets(uint8_t i) const { return _accel_offset[i]; } |
|
const Vector3f &get_accel_offsets(void) const { return get_accel_offsets(_primary_accel); } |
|
|
|
// get accel scale |
|
const Vector3f &get_accel_scale(uint8_t i) const { return _accel_scale[i]; } |
|
const Vector3f &get_accel_scale(void) const { return get_accel_scale(_primary_accel); } |
|
|
|
// return the temperature if supported. Zero is returned if no |
|
// temperature is available |
|
float get_temperature(uint8_t instance) const { return _temperature[instance]; } |
|
|
|
/* get_delta_time returns the time period in seconds |
|
* overwhich the sensor data was collected |
|
*/ |
|
float get_delta_time() const { return _delta_time; } |
|
|
|
// return the maximum gyro drift rate in radians/s/s. This |
|
// depends on what gyro chips are being used |
|
float get_gyro_drift_rate(void) const { return ToRad(0.5f/60); } |
|
|
|
// update gyro and accel values from accumulated samples |
|
void update(void); |
|
|
|
// wait for a sample to be available |
|
void wait_for_sample(void); |
|
|
|
// class level parameters |
|
static const struct AP_Param::GroupInfo var_info[]; |
|
|
|
// set overall board orientation |
|
void set_board_orientation(enum Rotation orientation) { |
|
_board_orientation = orientation; |
|
} |
|
|
|
// return the selected sample rate |
|
uint16_t get_sample_rate(void) const { return _sample_rate; } |
|
|
|
// return the main loop delta_t in seconds |
|
float get_loop_delta_t(void) const { return _loop_delta_t; } |
|
|
|
uint16_t error_count(void) const { return 0; } |
|
bool healthy(void) const { return get_gyro_health() && get_accel_health(); } |
|
|
|
uint8_t get_primary_accel(void) const { return _primary_accel; } |
|
uint8_t get_primary_gyro(void) const { return _primary_gyro; } |
|
|
|
// enable HIL mode |
|
void set_hil_mode(void) { _hil_mode = true; } |
|
|
|
// get the gyro filter rate in Hz |
|
uint8_t get_gyro_filter_hz(void) const { return _gyro_filter_cutoff; } |
|
|
|
// get the accel filter rate in Hz |
|
uint8_t get_accel_filter_hz(void) const { return _accel_filter_cutoff; } |
|
|
|
// pass in a pointer to DataFlash for raw data logging |
|
void set_dataflash(DataFlash_Class *dataflash) { _dataflash = dataflash; } |
|
|
|
// enable/disable raw gyro/accel logging |
|
void set_raw_logging(bool enable) { _log_raw_data = enable; } |
|
|
|
// calculate vibration levels and check for accelerometer clipping (called by a backends) |
|
void calc_vibration_and_clipping(uint8_t instance, const Vector3f &accel, float dt); |
|
|
|
// retrieve latest calculated vibration levels |
|
Vector3f get_vibration_levels() const { return get_vibration_levels(_primary_accel); } |
|
Vector3f get_vibration_levels(uint8_t instance) const; |
|
|
|
// retrieve and clear accelerometer clipping count |
|
uint32_t get_accel_clip_count(uint8_t instance) const; |
|
|
|
// check for vibration movement. True when all axis show nearly zero movement |
|
bool is_still(); |
|
|
|
/* |
|
HIL set functions. The minimum for HIL is set_accel() and |
|
set_gyro(). The others are option for higher fidelity log |
|
playback |
|
*/ |
|
void set_accel(uint8_t instance, const Vector3f &accel); |
|
void set_gyro(uint8_t instance, const Vector3f &gyro); |
|
void set_delta_time(float delta_time); |
|
void set_delta_velocity(uint8_t instance, float deltavt, const Vector3f &deltav); |
|
void set_delta_angle(uint8_t instance, const Vector3f &deltaa, float deltaat); |
|
|
|
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id) { return get_auxiliary_bus(backend_id, 0); } |
|
AuxiliaryBus *get_auxiliary_bus(int16_t backend_id, uint8_t instance); |
|
|
|
void detect_backends(void); |
|
|
|
// accel peak hold detector |
|
void set_accel_peak_hold(uint8_t instance, const Vector3f &accel); |
|
float get_accel_peak_hold_neg_x() const { return _peak_hold_state.accel_peak_hold_neg_x; } |
|
|
|
//Returns accel calibrator interface object pointer |
|
AP_AccelCal* get_acal() const { return _acal; } |
|
|
|
// Returns body fixed accelerometer level data averaged during accel calibration's first step |
|
bool get_fixed_mount_accel_cal_sample(uint8_t sample_num, Vector3f& ret) const; |
|
|
|
// Returns primary accelerometer level data averaged during accel calibration's first step |
|
bool get_primary_accel_cal_sample_avg(uint8_t sample_num, Vector3f& ret) const; |
|
|
|
// Returns newly calculated trim values if calculated |
|
bool get_new_trim(float& trim_roll, float &trim_pitch); |
|
|
|
// initialise and register accel calibrator |
|
// called during the startup of accel cal |
|
void acal_init(); |
|
|
|
// update accel calibrator |
|
void acal_update(); |
|
|
|
bool accel_cal_requires_reboot() const { return _accel_cal_requires_reboot; } |
|
private: |
|
|
|
// load backend drivers |
|
void _add_backend(AP_InertialSensor_Backend *backend); |
|
void _start_backends(); |
|
AP_InertialSensor_Backend *_find_backend(int16_t backend_id, uint8_t instance); |
|
|
|
// gyro initialisation |
|
void _init_gyro(); |
|
|
|
// Calibration routines borrowed from Rolfe Schmidt |
|
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/ |
|
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde |
|
|
|
bool _calculate_trim(const Vector3f &accel_sample, float& trim_roll, float& trim_pitch); |
|
|
|
// save parameters to eeprom |
|
void _save_parameters(); |
|
|
|
// backend objects |
|
AP_InertialSensor_Backend *_backends[INS_MAX_BACKENDS]; |
|
|
|
// number of gyros and accel drivers. Note that most backends |
|
// provide both accel and gyro data, so will increment both |
|
// counters on initialisation |
|
uint8_t _gyro_count; |
|
uint8_t _accel_count; |
|
uint8_t _backend_count; |
|
|
|
// the selected sample rate |
|
uint16_t _sample_rate; |
|
float _loop_delta_t; |
|
|
|
// Most recent accelerometer reading |
|
Vector3f _accel[INS_MAX_INSTANCES]; |
|
Vector3f _delta_velocity[INS_MAX_INSTANCES]; |
|
float _delta_velocity_dt[INS_MAX_INSTANCES]; |
|
bool _delta_velocity_valid[INS_MAX_INSTANCES]; |
|
// delta velocity accumulator |
|
Vector3f _delta_velocity_acc[INS_MAX_INSTANCES]; |
|
// time accumulator for delta velocity accumulator |
|
float _delta_velocity_acc_dt[INS_MAX_INSTANCES]; |
|
|
|
// Low Pass filters for gyro and accel |
|
LowPassFilter2pVector3f _accel_filter[INS_MAX_INSTANCES]; |
|
LowPassFilter2pVector3f _gyro_filter[INS_MAX_INSTANCES]; |
|
Vector3f _accel_filtered[INS_MAX_INSTANCES]; |
|
Vector3f _gyro_filtered[INS_MAX_INSTANCES]; |
|
bool _new_accel_data[INS_MAX_INSTANCES]; |
|
bool _new_gyro_data[INS_MAX_INSTANCES]; |
|
|
|
// Most recent gyro reading |
|
Vector3f _gyro[INS_MAX_INSTANCES]; |
|
Vector3f _delta_angle[INS_MAX_INSTANCES]; |
|
float _delta_angle_dt[INS_MAX_INSTANCES]; |
|
bool _delta_angle_valid[INS_MAX_INSTANCES]; |
|
// time accumulator for delta angle accumulator |
|
float _delta_angle_acc_dt[INS_MAX_INSTANCES]; |
|
Vector3f _delta_angle_acc[INS_MAX_INSTANCES]; |
|
Vector3f _last_delta_angle[INS_MAX_INSTANCES]; |
|
Vector3f _last_raw_gyro[INS_MAX_INSTANCES]; |
|
|
|
// product id |
|
AP_Int16 _product_id; |
|
|
|
// accelerometer scaling and offsets |
|
AP_Vector3f _accel_scale[INS_MAX_INSTANCES]; |
|
AP_Vector3f _accel_offset[INS_MAX_INSTANCES]; |
|
AP_Vector3f _gyro_offset[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer max absolute offsets to be used for calibration |
|
float _accel_max_abs_offsets[INS_MAX_INSTANCES]; |
|
|
|
// accelerometer and gyro raw sample rate in units of Hz |
|
uint16_t _accel_raw_sample_rates[INS_MAX_INSTANCES]; |
|
uint16_t _gyro_raw_sample_rates[INS_MAX_INSTANCES]; |
|
|
|
// temperatures for an instance if available |
|
float _temperature[INS_MAX_INSTANCES]; |
|
|
|
// filtering frequency (0 means default) |
|
AP_Int8 _accel_filter_cutoff; |
|
AP_Int8 _gyro_filter_cutoff; |
|
AP_Int8 _gyro_cal_timing; |
|
|
|
// use for attitude, velocity, position estimates |
|
AP_Int8 _use[INS_MAX_INSTANCES]; |
|
|
|
// board orientation from AHRS |
|
enum Rotation _board_orientation; |
|
|
|
// calibrated_ok flags |
|
bool _gyro_cal_ok[INS_MAX_INSTANCES]; |
|
|
|
// primary accel and gyro |
|
uint8_t _primary_gyro; |
|
uint8_t _primary_accel; |
|
|
|
// has wait_for_sample() found a sample? |
|
bool _have_sample:1; |
|
|
|
// are we in HIL mode? |
|
bool _hil_mode:1; |
|
|
|
// are gyros or accels currently being calibrated |
|
bool _calibrating:1; |
|
|
|
// should we log raw accel/gyro data? |
|
bool _log_raw_data:1; |
|
|
|
bool _backends_detected:1; |
|
|
|
// the delta time in seconds for the last sample |
|
float _delta_time; |
|
|
|
// last time a wait_for_sample() returned a sample |
|
uint32_t _last_sample_usec; |
|
|
|
// target time for next wait_for_sample() return |
|
uint32_t _next_sample_usec; |
|
|
|
// time between samples in microseconds |
|
uint32_t _sample_period_usec; |
|
|
|
// health of gyros and accels |
|
bool _gyro_healthy[INS_MAX_INSTANCES]; |
|
bool _accel_healthy[INS_MAX_INSTANCES]; |
|
|
|
uint32_t _accel_error_count[INS_MAX_INSTANCES]; |
|
uint32_t _gyro_error_count[INS_MAX_INSTANCES]; |
|
|
|
// vibration and clipping |
|
uint32_t _accel_clip_count[INS_MAX_INSTANCES]; |
|
LowPassFilterVector3f _accel_vibe_floor_filter[INS_VIBRATION_CHECK_INSTANCES]; |
|
LowPassFilterVector3f _accel_vibe_filter[INS_VIBRATION_CHECK_INSTANCES]; |
|
|
|
// peak hold detector state for primary accel |
|
struct PeakHoldState { |
|
float accel_peak_hold_neg_x; |
|
uint32_t accel_peak_hold_neg_x_age; |
|
} _peak_hold_state; |
|
|
|
// threshold for detecting stillness |
|
AP_Float _still_threshold; |
|
|
|
/* |
|
state for HIL support |
|
*/ |
|
struct { |
|
float delta_time; |
|
} _hil {}; |
|
|
|
// Trim options |
|
AP_Int8 _acc_body_aligned; |
|
AP_Int8 _trim_option; |
|
|
|
DataFlash_Class *_dataflash; |
|
|
|
static AP_InertialSensor *_s_instance; |
|
AP_AccelCal* _acal; |
|
|
|
AccelCalibrator *_accel_calibrator; |
|
|
|
//save accelerometer bias and scale factors |
|
void _acal_save_calibrations(); |
|
void _acal_event_failure(); |
|
|
|
// Returns AccelCalibrator objects pointer for specified acceleromter |
|
AccelCalibrator* _acal_get_calibrator(uint8_t i) { return i<get_accel_count()?&(_accel_calibrator[i]):NULL; } |
|
|
|
float _trim_pitch; |
|
float _trim_roll; |
|
bool _new_trim; |
|
|
|
bool _accel_cal_requires_reboot; |
|
|
|
// sensor error count at startup (used to ignore errors within 2 seconds of startup) |
|
uint32_t _accel_startup_error_count[INS_MAX_INSTANCES]; |
|
uint32_t _gyro_startup_error_count[INS_MAX_INSTANCES]; |
|
bool _startup_error_counts_set; |
|
uint32_t _startup_ms; |
|
};
|
|
|