You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
14 KiB
314 lines
14 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_Mount_Servo.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// init - performs any required initialisation for this instance |
|
void AP_Mount_Servo::init() |
|
{ |
|
if (_instance == 0) { |
|
_roll_idx = RC_Channel_aux::k_mount_roll; |
|
_tilt_idx = RC_Channel_aux::k_mount_tilt; |
|
_pan_idx = RC_Channel_aux::k_mount_pan; |
|
_open_idx = RC_Channel_aux::k_mount_open; |
|
} else { |
|
// this must be the 2nd mount |
|
_roll_idx = RC_Channel_aux::k_mount2_roll; |
|
_tilt_idx = RC_Channel_aux::k_mount2_tilt; |
|
_pan_idx = RC_Channel_aux::k_mount2_pan; |
|
_open_idx = RC_Channel_aux::k_mount2_open; |
|
} |
|
|
|
// check which servos have been assigned |
|
check_servo_map(); |
|
} |
|
|
|
// update mount position - should be called periodically |
|
void AP_Mount_Servo::update() |
|
{ |
|
static bool mount_open = 0; // 0 is closed |
|
|
|
// check servo map every three seconds to allow users to modify parameters |
|
uint32_t now = hal.scheduler->millis(); |
|
if (now - _last_check_servo_map_ms > 3000) { |
|
check_servo_map(); |
|
_last_check_servo_map_ms = now; |
|
} |
|
|
|
switch(_frontend.get_mode(_instance)) { |
|
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage |
|
case MAV_MOUNT_MODE_RETRACT: |
|
{ |
|
_angle_bf_output_deg = _frontend.state[_instance]._retract_angles.get(); |
|
break; |
|
} |
|
|
|
// move mount to a neutral position, typically pointing forward |
|
case MAV_MOUNT_MODE_NEUTRAL: |
|
{ |
|
_angle_bf_output_deg = _frontend.state[_instance]._neutral_angles.get(); |
|
break; |
|
} |
|
|
|
// point to the angles given by a mavlink message |
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING: |
|
{ |
|
// earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS |
|
stabilize(); |
|
break; |
|
} |
|
|
|
// RC radio manual angle control, but with stabilization from the AHRS |
|
case MAV_MOUNT_MODE_RC_TARGETING: |
|
{ |
|
#define rc_ch(i) RC_Channel::rc_channel(i-1) |
|
uint8_t roll_rc_in = _frontend.state[_instance]._roll_rc_in; |
|
uint8_t tilt_rc_in = _frontend.state[_instance]._tilt_rc_in; |
|
uint8_t pan_rc_in = _frontend.state[_instance]._pan_rc_in; |
|
|
|
if (_frontend._joystick_speed) { // for spring loaded joysticks |
|
// allow pilot speed position input to come directly from an RC_Channel |
|
if (roll_rc_in && rc_ch(roll_rc_in)) { |
|
_angle_ef_target_rad.x += rc_ch(roll_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed; |
|
constrain_float(_angle_ef_target_rad.x, radians(_frontend.state[_instance]._roll_angle_min*0.01f), radians(_frontend.state[_instance]._roll_angle_max*0.01f)); |
|
} |
|
if (tilt_rc_in && (rc_ch(tilt_rc_in))) { |
|
_angle_ef_target_rad.y += rc_ch(tilt_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed; |
|
constrain_float(_angle_ef_target_rad.y, radians(_frontend.state[_instance]._tilt_angle_min*0.01f), radians(_frontend.state[_instance]._tilt_angle_max*0.01f)); |
|
} |
|
if (pan_rc_in && (rc_ch(pan_rc_in))) { |
|
_angle_ef_target_rad.z += rc_ch(pan_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed; |
|
constrain_float(_angle_ef_target_rad.z, radians(_frontend.state[_instance]._pan_angle_min*0.01f), radians(_frontend.state[_instance]._pan_angle_max*0.01f)); |
|
} |
|
} else { |
|
// allow pilot position input to come directly from an RC_Channel |
|
if (roll_rc_in && (rc_ch(roll_rc_in))) { |
|
_angle_ef_target_rad.x = angle_input_rad(rc_ch(roll_rc_in), _frontend.state[_instance]._roll_angle_min, _frontend.state[_instance]._roll_angle_max); |
|
} |
|
if (tilt_rc_in && (rc_ch(tilt_rc_in))) { |
|
_angle_ef_target_rad.y = angle_input_rad(rc_ch(tilt_rc_in), _frontend.state[_instance]._tilt_angle_min, _frontend.state[_instance]._tilt_angle_max); |
|
} |
|
if (pan_rc_in && (rc_ch(pan_rc_in))) { |
|
_angle_ef_target_rad.z = angle_input_rad(rc_ch(pan_rc_in), _frontend.state[_instance]._pan_angle_min, _frontend.state[_instance]._pan_angle_max); |
|
} |
|
} |
|
stabilize(); |
|
break; |
|
} |
|
|
|
// point mount to a GPS point given by the mission planner |
|
case MAV_MOUNT_MODE_GPS_POINT: |
|
{ |
|
if(_frontend._ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { |
|
calc_angle_to_location(_frontend.state[_instance]._roi_target, _angle_ef_target_rad, _flags.pan_control, _flags.tilt_control); |
|
stabilize(); |
|
} |
|
break; |
|
} |
|
|
|
default: |
|
//do nothing |
|
break; |
|
} |
|
|
|
// move mount to a "retracted position" into the fuselage with a fourth servo |
|
bool mount_open_new = (_frontend.get_mode(_instance) == MAV_MOUNT_MODE_RETRACT) ? 0 : 1; |
|
if (mount_open != mount_open_new) { |
|
mount_open = mount_open_new; |
|
move_servo(_open_idx, mount_open_new, 0, 1); |
|
} |
|
|
|
// write the results to the servos |
|
move_servo(_roll_idx, _angle_bf_output_deg.x*10, _frontend.state[_instance]._roll_angle_min*0.1f, _frontend.state[_instance]._roll_angle_max*0.1f); |
|
move_servo(_tilt_idx, _angle_bf_output_deg.y*10, _frontend.state[_instance]._tilt_angle_min*0.1f, _frontend.state[_instance]._tilt_angle_max*0.1f); |
|
move_servo(_pan_idx, _angle_bf_output_deg.z*10, _frontend.state[_instance]._pan_angle_min*0.1f, _frontend.state[_instance]._pan_angle_max*0.1f); |
|
} |
|
|
|
// set_mode - sets mount's mode |
|
void AP_Mount_Servo::set_mode(enum MAV_MOUNT_MODE mode) |
|
{ |
|
// record the mode change and return success |
|
_frontend.state[_instance]._mode = mode; |
|
} |
|
|
|
// set_roi_target - sets target location that mount should attempt to point towards |
|
void AP_Mount_Servo::set_roi_target(const struct Location &target_loc) |
|
{ |
|
// set the target gps location |
|
_frontend.state[_instance]._roi_target = target_loc; |
|
|
|
// set the mode to GPS tracking mode |
|
_frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT); |
|
} |
|
|
|
// private methods |
|
|
|
// check_servo_map - detects which axis we control using the functions assigned to the servos in the RC_Channel_aux |
|
// should be called periodically (i.e. 1hz or less) |
|
void AP_Mount_Servo::check_servo_map() |
|
{ |
|
_flags.roll_control = RC_Channel_aux::function_assigned(_roll_idx); |
|
_flags.tilt_control = RC_Channel_aux::function_assigned(_tilt_idx); |
|
_flags.pan_control = RC_Channel_aux::function_assigned(_pan_idx); |
|
} |
|
|
|
// configure_msg - process MOUNT_CONFIGURE messages received from GCS |
|
void AP_Mount_Servo::configure_msg(mavlink_message_t* msg) |
|
{ |
|
__mavlink_mount_configure_t packet; |
|
mavlink_msg_mount_configure_decode(msg, &packet); |
|
|
|
// set mode |
|
_frontend.set_mode(_instance,(enum MAV_MOUNT_MODE)packet.mount_mode); |
|
|
|
// set which axis are stabilized |
|
_frontend.state[_instance]._stab_roll = packet.stab_roll; |
|
_frontend.state[_instance]._stab_tilt = packet.stab_pitch; |
|
_frontend.state[_instance]._stab_pan = packet.stab_yaw; |
|
} |
|
|
|
// control_msg - process MOUNT_CONTROL messages received from GCS |
|
void AP_Mount_Servo::control_msg(mavlink_message_t *msg) |
|
{ |
|
__mavlink_mount_control_t packet; |
|
mavlink_msg_mount_control_decode(msg, &packet); |
|
|
|
// interpret message fields based on mode |
|
switch (_frontend.get_mode(_instance)) { |
|
case MAV_MOUNT_MODE_RETRACT: |
|
case MAV_MOUNT_MODE_NEUTRAL: |
|
// do nothing with request if mount is retracted or in neutral position |
|
break; |
|
|
|
// set earth frame target angles from mavlink message |
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING: |
|
_angle_ef_target_rad.x = packet.input_b*0.01f; // convert roll in centi-degrees to degrees |
|
_angle_ef_target_rad.y = packet.input_a*0.01f; // convert tilt in centi-degrees to degrees |
|
_angle_ef_target_rad.z = packet.input_c*0.01f; // convert pan in centi-degrees to degrees |
|
break; |
|
|
|
// Load neutral position and start RC Roll,Pitch,Yaw control with stabilization |
|
case MAV_MOUNT_MODE_RC_TARGETING: |
|
// do nothing if pilot is controlling the roll, pitch and yaw |
|
break; |
|
|
|
// set lat, lon, alt position targets from mavlink message |
|
case MAV_MOUNT_MODE_GPS_POINT: |
|
Location target_location; |
|
target_location.lat = packet.input_a; |
|
target_location.lng = packet.input_b; |
|
target_location.alt = packet.input_c; |
|
set_roi_target(target_location); |
|
break; |
|
|
|
default: |
|
// do nothing |
|
break; |
|
} |
|
} |
|
|
|
|
|
// status_msg - called to allow mounts to send their status to GCS using the MOUNT_STATUS message |
|
void AP_Mount_Servo::status_msg(mavlink_channel_t chan) |
|
{ |
|
mavlink_msg_mount_status_send(chan, 0, 0, _angle_bf_output_deg.x*100, _angle_bf_output_deg.y*100, _angle_bf_output_deg.z*100); |
|
} |
|
|
|
// stabilize - stabilizes the mount relative to the Earth's frame |
|
// input: _angle_ef_target_rad (earth frame targets in radians) |
|
// output: _angle_bf_output_deg (body frame angles in degrees) |
|
void AP_Mount_Servo::stabilize() |
|
{ |
|
// only do the full 3D frame transform if we are doing pan control |
|
if (_frontend.state[_instance]._stab_pan) { |
|
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs |
|
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input. |
|
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos. |
|
m = _frontend._ahrs.get_dcm_matrix(); |
|
m.transpose(); |
|
cam.from_euler(_angle_ef_target_rad.x, _angle_ef_target_rad.y, _angle_ef_target_rad.z); |
|
gimbal_target = m * cam; |
|
gimbal_target.to_euler(&_angle_bf_output_deg.x, &_angle_bf_output_deg.y, &_angle_bf_output_deg.z); |
|
_angle_bf_output_deg.x = _frontend.state[_instance]._stab_roll ? degrees(_angle_bf_output_deg.x) : degrees(_angle_ef_target_rad.x); |
|
_angle_bf_output_deg.y = _frontend.state[_instance]._stab_tilt ? degrees(_angle_bf_output_deg.y) : degrees(_angle_ef_target_rad.y); |
|
_angle_bf_output_deg.z = degrees(_angle_bf_output_deg.z); |
|
} else { |
|
// otherwise base mount roll and tilt on the ahrs |
|
// roll/tilt attitude, plus any requested angle |
|
_angle_bf_output_deg.x = degrees(_angle_ef_target_rad.x); |
|
_angle_bf_output_deg.y = degrees(_angle_ef_target_rad.y); |
|
_angle_bf_output_deg.z = degrees(_angle_ef_target_rad.z); |
|
if (_frontend.state[_instance]._stab_roll) { |
|
_angle_bf_output_deg.x -= degrees(_frontend._ahrs.roll); |
|
} |
|
if (_frontend.state[_instance]._stab_tilt) { |
|
_angle_bf_output_deg.y -= degrees(_frontend._ahrs.pitch); |
|
} |
|
|
|
// lead filter |
|
const Vector3f &gyro = _frontend._ahrs.get_gyro(); |
|
|
|
if (_frontend.state[_instance]._stab_roll && _frontend.state[_instance]._roll_stb_lead != 0.0f && fabsf(_frontend._ahrs.pitch) < M_PI/3.0f) { |
|
// Compute rate of change of euler roll angle |
|
float roll_rate = gyro.x + (_frontend._ahrs.sin_pitch() / _frontend._ahrs.cos_pitch()) * (gyro.y * _frontend._ahrs.sin_roll() + gyro.z * _frontend._ahrs.cos_roll()); |
|
_angle_bf_output_deg.x -= degrees(roll_rate) * _frontend.state[_instance]._roll_stb_lead; |
|
} |
|
|
|
if (_frontend.state[_instance]._stab_tilt && _frontend.state[_instance]._pitch_stb_lead != 0.0f) { |
|
// Compute rate of change of euler pitch angle |
|
float pitch_rate = _frontend._ahrs.cos_pitch() * gyro.y - _frontend._ahrs.sin_roll() * gyro.z; |
|
_angle_bf_output_deg.y -= degrees(pitch_rate) * _frontend.state[_instance]._pitch_stb_lead; |
|
} |
|
} |
|
} |
|
|
|
// returns the angle (degrees*100) that the RC_Channel input is receiving |
|
int32_t |
|
AP_Mount_Servo::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max) |
|
{ |
|
return (rc->get_reverse() ? -1 : 1) * (rc->radio_in - rc->radio_min) * (int32_t)(angle_max - angle_min) / (rc->radio_max - rc->radio_min) + (rc->get_reverse() ? angle_max : angle_min); |
|
} |
|
|
|
// returns the angle (radians) that the RC_Channel input is receiving |
|
float |
|
AP_Mount_Servo::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max) |
|
{ |
|
return radians(angle_input(rc, angle_min, angle_max)*0.01f); |
|
} |
|
|
|
// closest_limit - returns closest angle to 'angle' taking into account limits. all angles are in degrees * 10 |
|
int16_t AP_Mount_Servo::closest_limit(int16_t angle, int16_t angle_min, int16_t angle_max) |
|
{ |
|
// Make sure the angle lies in the interval [-180 .. 180[ degrees |
|
while (angle < -1800) angle += 3600; |
|
while (angle >= 1800) angle -= 3600; |
|
|
|
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees |
|
while (angle_min < -1800) angle_min += 3600; |
|
while (angle_min >= 1800) angle_min -= 3600; |
|
while (angle_max < -1800) angle_max += 3600; |
|
while (angle_max >= 1800) angle_max -= 3600; |
|
// TODO call this function somehow, otherwise this will never work |
|
//set_range(min, max); |
|
|
|
// If the angle is outside servo limits, saturate the angle to the closest limit |
|
// On a circle the closest angular position must be carefully calculated to account for wrap-around |
|
if ((angle < angle_min) && (angle > angle_max)) { |
|
// angle error if min limit is used |
|
int16_t err_min = angle_min - angle + (angle<angle_min ? 0 : 3600); // add 360 degrees if on the "wrong side" |
|
// angle error if max limit is used |
|
int16_t err_max = angle - angle_max + (angle>angle_max ? 0 : 3600); // add 360 degrees if on the "wrong side" |
|
angle = err_min<err_max ? angle_min : angle_max; |
|
} |
|
|
|
return angle; |
|
} |
|
|
|
// move_servo - moves servo with the given id to the specified angle. all angles are in degrees * 10 |
|
void AP_Mount_Servo::move_servo(uint8_t function_idx, int16_t angle, int16_t angle_min, int16_t angle_max) |
|
{ |
|
// saturate to the closest angle limit if outside of [min max] angle interval |
|
int16_t servo_out = closest_limit(angle, angle_min, angle_max); |
|
RC_Channel_aux::move_servo((RC_Channel_aux::Aux_servo_function_t)function_idx, servo_out, angle_min, angle_max); |
|
}
|
|
|