You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
5.2 KiB
192 lines
5.2 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include "AP_RPM.h" |
|
#include "RPM_Pin.h" |
|
#include "RPM_SITL.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// table of user settable parameters |
|
const AP_Param::GroupInfo AP_RPM::var_info[] = { |
|
// @Param: _TYPE |
|
// @DisplayName: RPM type |
|
// @Description: What type of RPM sensor is connected |
|
// @Values: 0:None,1:PWM,2:AUXPIN |
|
// @User: Standard |
|
AP_GROUPINFO("_TYPE", 0, AP_RPM, _type[0], 0), |
|
|
|
// @Param: _SCALING |
|
// @DisplayName: RPM scaling |
|
// @Description: Scaling factor between sensor reading and RPM. |
|
// @Increment: 0.001 |
|
// @User: Standard |
|
AP_GROUPINFO("_SCALING", 1, AP_RPM, _scaling[0], 1.0f), |
|
|
|
// @Param: _MAX |
|
// @DisplayName: Maximum RPM |
|
// @Description: Maximum RPM to report |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("_MAX", 2, AP_RPM, _maximum[0], 100000), |
|
|
|
// @Param: _MIN |
|
// @DisplayName: Minimum RPM |
|
// @Description: Minimum RPM to report |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("_MIN", 3, AP_RPM, _minimum[0], 10), |
|
|
|
// @Param: _MIN_QUAL |
|
// @DisplayName: Minimum Quality |
|
// @Description: Minimum data quality to be used |
|
// @Increment: 0.1 |
|
// @User: Advanced |
|
AP_GROUPINFO("_MIN_QUAL", 4, AP_RPM, _quality_min[0], 0.5), |
|
|
|
// @Param: _PIN |
|
// @DisplayName: Input pin number |
|
// @Description: Which pin to use |
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6 |
|
// @User: Standard |
|
AP_GROUPINFO("_PIN", 5, AP_RPM, _pin[0], 54), |
|
|
|
#if RPM_MAX_INSTANCES > 1 |
|
// @Param: 2_TYPE |
|
// @DisplayName: Second RPM type |
|
// @Description: What type of RPM sensor is connected |
|
// @Values: 0:None,1:PWM,2:AUXPIN |
|
// @User: Advanced |
|
AP_GROUPINFO("2_TYPE", 10, AP_RPM, _type[1], 0), |
|
|
|
// @Param: 2_SCALING |
|
// @DisplayName: RPM scaling |
|
// @Description: Scaling factor between sensor reading and RPM. |
|
// @Increment: 0.001 |
|
// @User: Advanced |
|
AP_GROUPINFO("2_SCALING", 11, AP_RPM, _scaling[1], 1.0f), |
|
#endif |
|
|
|
// @Param: 2_PIN |
|
// @DisplayName: RPM2 input pin number |
|
// @Description: Which pin to use |
|
// @Values: -1:Disabled,50:PixhawkAUX1,51:PixhawkAUX2,52:PixhawkAUX3,53:PixhawkAUX4,54:PixhawkAUX5,55:PixhawkAUX6 |
|
// @User: Standard |
|
AP_GROUPINFO("2_PIN", 12, AP_RPM, _pin[1], -1), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
AP_RPM::AP_RPM(void) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
if (_singleton != nullptr) { |
|
AP_HAL::panic("AP_RPM must be singleton"); |
|
} |
|
_singleton = this; |
|
} |
|
|
|
/* |
|
initialise the AP_RPM class. |
|
*/ |
|
void AP_RPM::init(void) |
|
{ |
|
if (num_instances != 0) { |
|
// init called a 2nd time? |
|
return; |
|
} |
|
for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) { |
|
uint8_t type = _type[i]; |
|
|
|
if (type == RPM_TYPE_PWM) { |
|
// PWM option same as PIN option, for upgrade |
|
type = RPM_TYPE_PIN; |
|
} |
|
if (type == RPM_TYPE_PIN) { |
|
drivers[i] = new AP_RPM_Pin(*this, i, state[i]); |
|
} |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
drivers[i] = new AP_RPM_SITL(*this, i, state[i]); |
|
#endif |
|
if (drivers[i] != nullptr) { |
|
// we loaded a driver for this instance, so it must be |
|
// present (although it may not be healthy) |
|
num_instances = i+1; // num_instances is a high-water-mark |
|
} |
|
} |
|
} |
|
|
|
/* |
|
update RPM state for all instances. This should be called by main loop |
|
*/ |
|
void AP_RPM::update(void) |
|
{ |
|
for (uint8_t i=0; i<num_instances; i++) { |
|
if (drivers[i] != nullptr) { |
|
if (_type[i] == RPM_TYPE_NONE) { |
|
// allow user to disable an RPM sensor at runtime and force it to re-learn the quality if re-enabled. |
|
state[i].signal_quality = 0; |
|
continue; |
|
} |
|
|
|
drivers[i]->update(); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
check if an instance is healthy |
|
*/ |
|
bool AP_RPM::healthy(uint8_t instance) const |
|
{ |
|
if (instance >= num_instances || _type[instance] == RPM_TYPE_NONE) { |
|
return false; |
|
} |
|
|
|
// check that data quality is above minimum required |
|
if (state[instance].signal_quality < _quality_min[0]) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
check if an instance is activated |
|
*/ |
|
bool AP_RPM::enabled(uint8_t instance) const |
|
{ |
|
if (instance >= num_instances) { |
|
return false; |
|
} |
|
// if no sensor type is selected, the sensor is not activated. |
|
if (_type[instance] == RPM_TYPE_NONE) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// singleton instance |
|
AP_RPM *AP_RPM::_singleton; |
|
|
|
namespace AP { |
|
|
|
AP_RPM *rpm() |
|
{ |
|
return AP_RPM::get_singleton(); |
|
} |
|
|
|
}
|
|
|