You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
5.1 KiB
214 lines
5.1 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
/// @file AC_PID.cpp |
|
/// @brief Generic PID algorithm |
|
|
|
#include <AP_Math/AP_Math.h> |
|
#include "AC_PID.h" |
|
|
|
const AP_Param::GroupInfo AC_PID::var_info[] = { |
|
// @Param: P |
|
// @DisplayName: PID Proportional Gain |
|
// @Description: P Gain which produces an output value that is proportional to the current error value |
|
AP_GROUPINFO("P", 0, AC_PID, _kp, 0), |
|
|
|
// @Param: I |
|
// @DisplayName: PID Integral Gain |
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error |
|
AP_GROUPINFO("I", 1, AC_PID, _ki, 0), |
|
|
|
// @Param: D |
|
// @DisplayName: PID Derivative Gain |
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error |
|
AP_GROUPINFO("D", 2, AC_PID, _kd, 0), |
|
|
|
// 3 was for uint16 IMAX |
|
// 4 is used by TradHeli for FF |
|
|
|
// @Param: IMAX |
|
// @DisplayName: PID Integral Maximum |
|
// @Description: The maximum/minimum value that the I term can output |
|
AP_GROUPINFO("IMAX", 5, AC_PID, _imax, 0), |
|
|
|
// @Param: FILT_HZ |
|
// @DisplayName: PID Input filter frequency in Hz |
|
// @Description: Input filter frequency in Hz |
|
// @Unit: Hz |
|
AP_GROUPINFO("FILT_HZ", 6, AC_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Constructor |
|
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt) : |
|
_dt(dt), |
|
_integrator(0.0f), |
|
_input(0.0f), |
|
_derivative(0.0f) |
|
{ |
|
// load parameter values from eeprom |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
_kp = initial_p; |
|
_ki = initial_i; |
|
_kd = initial_d; |
|
_imax = fabsf(initial_imax); |
|
filt_hz(initial_filt_hz); |
|
|
|
// reset input filter to first value received |
|
_flags._reset_filter = true; |
|
|
|
memset(&_pid_info, 0, sizeof(_pid_info)); |
|
} |
|
|
|
// set_dt - set time step in seconds |
|
void AC_PID::set_dt(float dt) |
|
{ |
|
// set dt and calculate the input filter alpha |
|
_dt = dt; |
|
} |
|
|
|
// filt_hz - set input filter hz |
|
void AC_PID::filt_hz(float hz) |
|
{ |
|
_filt_hz.set(fabsf(hz)); |
|
|
|
// sanity check _filt_hz |
|
_filt_hz = max(_filt_hz, AC_PID_FILT_HZ_MIN); |
|
} |
|
|
|
// set_input_filter_all - set input to PID controller |
|
// input is filtered before the PID controllers are run |
|
// this should be called before any other calls to get_p, get_i or get_d |
|
void AC_PID::set_input_filter_all(float input) |
|
{ |
|
// don't process inf or NaN |
|
if (!isfinite(input)) { |
|
return; |
|
} |
|
|
|
// reset input filter to value received |
|
if (_flags._reset_filter) { |
|
_flags._reset_filter = false; |
|
_input = input; |
|
_derivative = 0.0f; |
|
} |
|
|
|
// update filter and calculate derivative |
|
float input_filt_change = get_filt_alpha() * (input - _input); |
|
_input = _input + input_filt_change; |
|
if (_dt > 0.0f) { |
|
_derivative = input_filt_change / _dt; |
|
} |
|
} |
|
|
|
// set_input_filter_d - set input to PID controller |
|
// only input to the D portion of the controller is filtered |
|
// this should be called before any other calls to get_p, get_i or get_d |
|
void AC_PID::set_input_filter_d(float input) |
|
{ |
|
// don't process inf or NaN |
|
if (!isfinite(input)) { |
|
return; |
|
} |
|
|
|
// reset input filter to value received |
|
if (_flags._reset_filter) { |
|
_flags._reset_filter = false; |
|
_derivative = 0.0f; |
|
} |
|
|
|
// update filter and calculate derivative |
|
if (_dt > 0.0f) { |
|
float derivative = (input - _input) / _dt; |
|
_derivative = _derivative + get_filt_alpha() * (derivative-_derivative); |
|
} |
|
|
|
_input = input; |
|
} |
|
|
|
float AC_PID::get_p() |
|
{ |
|
_pid_info.P = (_input * _kp); |
|
return _pid_info.P; |
|
} |
|
|
|
float AC_PID::get_i() |
|
{ |
|
if(!is_zero(_ki) && !is_zero(_dt)) { |
|
_integrator += ((float)_input * _ki) * _dt; |
|
if (_integrator < -_imax) { |
|
_integrator = -_imax; |
|
} else if (_integrator > _imax) { |
|
_integrator = _imax; |
|
} |
|
_pid_info.I = _integrator; |
|
return _integrator; |
|
} |
|
return 0; |
|
} |
|
|
|
float AC_PID::get_d() |
|
{ |
|
// derivative component |
|
_pid_info.D = (_kd * _derivative); |
|
return _pid_info.D; |
|
} |
|
|
|
float AC_PID::get_pi() |
|
{ |
|
return get_p() + get_i(); |
|
} |
|
|
|
float AC_PID::get_pid() |
|
{ |
|
return get_p() + get_i() + get_d(); |
|
} |
|
|
|
void AC_PID::reset_I() |
|
{ |
|
_integrator = 0; |
|
} |
|
|
|
void AC_PID::load_gains() |
|
{ |
|
_kp.load(); |
|
_ki.load(); |
|
_kd.load(); |
|
_imax.load(); |
|
_imax = fabsf(_imax); |
|
_filt_hz.load(); |
|
} |
|
|
|
// save_gains - save gains to eeprom |
|
void AC_PID::save_gains() |
|
{ |
|
_kp.save(); |
|
_ki.save(); |
|
_kd.save(); |
|
_imax.save(); |
|
_filt_hz.save(); |
|
} |
|
|
|
/// Overload the function call operator to permit easy initialisation |
|
void AC_PID::operator() (float p, float i, float d, float imaxval, float input_filt_hz, float dt) |
|
{ |
|
_kp = p; |
|
_ki = i; |
|
_kd = d; |
|
_imax = fabsf(imaxval); |
|
_filt_hz = input_filt_hz; |
|
_dt = dt; |
|
} |
|
|
|
// calc_filt_alpha - recalculate the input filter alpha |
|
float AC_PID::get_filt_alpha() const |
|
{ |
|
if (is_zero(_filt_hz)) { |
|
return 1.0f; |
|
} |
|
|
|
// calculate alpha |
|
float rc = 1/(M_2PI_F*_filt_hz); |
|
return _dt / (_dt + rc); |
|
}
|
|
|