You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
3.5 KiB
122 lines
3.5 KiB
/* |
|
SITL handling |
|
|
|
This simulates a optical flow sensor |
|
|
|
Andrew Tridgell November 2011 |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
|
|
#include "AP_HAL_AVR_SITL.h" |
|
|
|
using namespace AVR_SITL; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#include <unistd.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <stdint.h> |
|
#include <math.h> |
|
|
|
#define MAX_OPTFLOW_DELAY 20 |
|
static uint8_t next_optflow_index; |
|
static uint8_t optflow_delay; |
|
static OpticalFlow::OpticalFlow_state optflow_data[MAX_OPTFLOW_DELAY]; |
|
|
|
/* |
|
update the optical flow with new data |
|
*/ |
|
void SITL_State::_update_flow(void) |
|
{ |
|
double p, q, r; |
|
Vector3f gyro; |
|
static uint32_t last_flow_ms; |
|
|
|
if (!_optical_flow || |
|
!_sitl->flow_enable) { |
|
return; |
|
} |
|
|
|
// update at the requested rate |
|
uint32_t now = hal.scheduler->millis(); |
|
if (now - last_flow_ms < 1000*(1.0f/_sitl->flow_rate)) { |
|
return; |
|
} |
|
last_flow_ms = now; |
|
|
|
// convert roll rates to body frame |
|
SITL::convert_body_frame(_sitl->state.rollDeg, |
|
_sitl->state.pitchDeg, |
|
_sitl->state.rollRate, |
|
_sitl->state.pitchRate, |
|
_sitl->state.yawRate, |
|
&p, &q, &r); |
|
gyro(p, q, r); |
|
|
|
OpticalFlow::OpticalFlow_state state; |
|
|
|
// NED velocity vector in m/s |
|
Vector3f velocity(_sitl->state.speedN, |
|
_sitl->state.speedE, |
|
_sitl->state.speedD); |
|
|
|
// a rotation matrix following DCM conventions |
|
Matrix3f rotmat; |
|
rotmat.from_euler(radians(_sitl->state.rollDeg), |
|
radians(_sitl->state.pitchDeg), |
|
radians(_sitl->state.yawDeg)); |
|
|
|
|
|
state.device_id = 1; |
|
state.surface_quality = 51; |
|
|
|
// estimate range to centre of image |
|
float range; |
|
if (rotmat.c.z > 0.05f) { |
|
range = height_agl() / rotmat.c.z; |
|
} else { |
|
range = 1e38f; |
|
} |
|
|
|
// Calculate relative velocity in sensor frame assuming no misalignment between sensor and vehicle body axes |
|
Vector3f relVelSensor = rotmat.mul_transpose(velocity); |
|
|
|
// Divide velocity by range and add body rates to get predicted sensed angular |
|
// optical rates relative to X and Y sensor axes assuming no misalignment or scale |
|
// factor error. Note - these are instantaneous values. The sensor sums these values across the interval from the last |
|
// poll to provide a delta angle across the interface |
|
state.flowRate.x = -relVelSensor.y/range + gyro.x; |
|
state.flowRate.y = relVelSensor.x/range + gyro.y; |
|
|
|
// The flow sensors body rates are assumed to be the same as the vehicle body rates (ie no misalignment) |
|
// Note - these are instantaneous values. The sensor sums these values across the interval from the last |
|
// poll to provide a delta angle across the interface. |
|
state.bodyRate = Vector2f(gyro.x, gyro.y); |
|
|
|
optflow_data[next_optflow_index++] = state; |
|
if (next_optflow_index >= optflow_delay+1) { |
|
next_optflow_index = 0; |
|
} |
|
|
|
state = optflow_data[next_optflow_index]; |
|
|
|
if (_sitl->flow_delay != optflow_delay) { |
|
// cope with updates to the delay control |
|
if (_sitl->flow_delay > MAX_OPTFLOW_DELAY) { |
|
_sitl->flow_delay = MAX_OPTFLOW_DELAY; |
|
} |
|
optflow_delay = _sitl->flow_delay; |
|
for (uint8_t i=0; i<optflow_delay; i++) { |
|
optflow_data[i] = state; |
|
} |
|
} |
|
|
|
_optical_flow->setHIL(state); |
|
} |
|
|
|
#endif
|
|
|