You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
600 lines
19 KiB
600 lines
19 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#define ARM_DELAY 20 // called at 10hz so 2 seconds |
|
#define DISARM_DELAY 20 // called at 10hz so 2 seconds |
|
#define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds |
|
#define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds |
|
|
|
// arm_motors_check - checks for pilot input to arm or disarm the copter |
|
// called at 10hz |
|
static void arm_motors_check() |
|
{ |
|
static int16_t arming_counter; |
|
bool allow_arming = false; |
|
|
|
// ensure throttle is down |
|
if (g.rc_3.control_in > 0) { |
|
arming_counter = 0; |
|
return; |
|
} |
|
|
|
// allow arming/disarming in fully manual flight modes ACRO, STABILIZE, SPORT and DRIFT |
|
if (manual_flight_mode(control_mode)) { |
|
allow_arming = true; |
|
} |
|
|
|
// allow arming/disarming in Loiter and AltHold if landed |
|
if (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD || control_mode == HYBRID)) { |
|
allow_arming = true; |
|
} |
|
|
|
// kick out other flight modes |
|
if (!allow_arming) { |
|
arming_counter = 0; |
|
return; |
|
} |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// heli specific arming check |
|
if (!motors.allow_arming()){ |
|
arming_counter = 0; |
|
return; |
|
} |
|
#endif // HELI_FRAME |
|
|
|
int16_t tmp = g.rc_4.control_in; |
|
|
|
// full right |
|
if (tmp > 4000) { |
|
|
|
// increase the arming counter to a maximum of 1 beyond the auto trim counter |
|
if( arming_counter <= AUTO_TRIM_DELAY ) { |
|
arming_counter++; |
|
} |
|
|
|
// arm the motors and configure for flight |
|
if (arming_counter == ARM_DELAY && !motors.armed()) { |
|
// run pre-arm-checks and display failures |
|
pre_arm_checks(true); |
|
if(ap.pre_arm_check && arm_checks(true)) { |
|
init_arm_motors(); |
|
}else{ |
|
// reset arming counter if pre-arm checks fail |
|
arming_counter = 0; |
|
AP_Notify::flags.arming_failed = true; |
|
} |
|
} |
|
|
|
// arm the motors and configure for flight |
|
if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) { |
|
auto_trim_counter = 250; |
|
} |
|
|
|
// full left |
|
}else if (tmp < -4000) { |
|
|
|
// increase the counter to a maximum of 1 beyond the disarm delay |
|
if( arming_counter <= DISARM_DELAY ) { |
|
arming_counter++; |
|
} |
|
|
|
// disarm the motors |
|
if (arming_counter == DISARM_DELAY && motors.armed()) { |
|
init_disarm_motors(); |
|
} |
|
|
|
// Yaw is centered so reset arming counter |
|
}else{ |
|
AP_Notify::flags.arming_failed = false; |
|
arming_counter = 0; |
|
} |
|
} |
|
|
|
// auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds |
|
// called at 1hz |
|
static void auto_disarm_check() |
|
{ |
|
static uint8_t auto_disarming_counter; |
|
|
|
// exit immediately if we are already disarmed or throttle is not zero |
|
if (!motors.armed() || g.rc_3.control_in > 0) { |
|
auto_disarming_counter = 0; |
|
return; |
|
} |
|
|
|
// allow auto disarm in manual flight modes or Loiter/AltHold if we're landed |
|
if(manual_flight_mode(control_mode) || (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD || control_mode == HYBRID))) { |
|
auto_disarming_counter++; |
|
|
|
if(auto_disarming_counter >= AUTO_DISARMING_DELAY) { |
|
init_disarm_motors(); |
|
auto_disarming_counter = 0; |
|
} |
|
}else{ |
|
auto_disarming_counter = 0; |
|
} |
|
} |
|
|
|
// init_arm_motors - performs arming process including initialisation of barometer and gyros |
|
static void init_arm_motors() |
|
{ |
|
// arming marker |
|
// Flag used to track if we have armed the motors the first time. |
|
// This is used to decide if we should run the ground_start routine |
|
// which calibrates the IMU |
|
static bool did_ground_start = false; |
|
|
|
// disable cpu failsafe because initialising everything takes a while |
|
failsafe_disable(); |
|
|
|
// disable inertial nav errors temporarily |
|
inertial_nav.ignore_next_error(); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
// start dataflash |
|
start_logging(); |
|
#endif |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); |
|
#endif |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// mid-flight, so set the serial ports non-blocking once we arm |
|
// the motors |
|
hal.uartA->set_blocking_writes(false); |
|
hal.uartC->set_blocking_writes(false); |
|
if (hal.uartD != NULL) { |
|
hal.uartD->set_blocking_writes(false); |
|
} |
|
|
|
// Remember Orientation |
|
// -------------------- |
|
init_simple_bearing(); |
|
|
|
initial_armed_bearing = ahrs.yaw_sensor; |
|
|
|
// Reset home position |
|
// ------------------- |
|
if (ap.home_is_set) { |
|
init_home(); |
|
calc_distance_and_bearing(); |
|
} |
|
|
|
if(did_ground_start == false) { |
|
did_ground_start = true; |
|
startup_ground(true); |
|
} |
|
|
|
// fast baro calibration to reset ground pressure |
|
init_barometer(false); |
|
|
|
// go back to normal AHRS gains |
|
ahrs.set_fast_gains(false); |
|
|
|
// enable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(true); |
|
ahrs.set_armed(true); |
|
|
|
// set hover throttle |
|
motors.set_mid_throttle(g.throttle_mid); |
|
|
|
// Cancel arming if throttle is raised too high so that copter does not suddenly take off |
|
read_radio(); |
|
if (g.rc_3.control_in > g.throttle_cruise && g.throttle_cruise > 100) { |
|
motors.output_min(); |
|
failsafe_enable(); |
|
return; |
|
} |
|
|
|
#if SPRAYER == ENABLED |
|
// turn off sprayer's test if on |
|
sprayer.test_pump(false); |
|
#endif |
|
|
|
// enable output to motors |
|
output_min(); |
|
|
|
// finally actually arm the motors |
|
motors.armed(true); |
|
|
|
// log arming to dataflash |
|
Log_Write_Event(DATA_ARMED); |
|
|
|
// reenable failsafe |
|
failsafe_enable(); |
|
} |
|
|
|
// perform pre-arm checks and set ap.pre_arm_check flag |
|
static void pre_arm_checks(bool display_failure) |
|
{ |
|
// exit immediately if we've already successfully performed the pre-arm check |
|
if (ap.pre_arm_check) { |
|
return; |
|
} |
|
|
|
// succeed if pre arm checks are disabled |
|
if(g.arming_check == ARMING_CHECK_NONE) { |
|
set_pre_arm_check(true); |
|
set_pre_arm_rc_check(true); |
|
return; |
|
} |
|
|
|
// pre-arm rc checks a prerequisite |
|
pre_arm_rc_checks(); |
|
if(!ap.pre_arm_rc_check) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated")); |
|
} |
|
return; |
|
} |
|
|
|
// check Baro |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { |
|
// barometer health check |
|
if(!barometer.healthy) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy")); |
|
} |
|
return; |
|
} |
|
// check Baro & inav alt are within 1m |
|
if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Alt disparity")); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
// check Compass |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { |
|
// check the compass is healthy |
|
if(!compass.healthy(0)) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy")); |
|
} |
|
return; |
|
} |
|
|
|
// check compass learning is on or offsets have been set |
|
Vector3f offsets = compass.get_offsets(); |
|
if(!compass._learn && offsets.length() == 0) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated")); |
|
} |
|
return; |
|
} |
|
|
|
// check for unreasonable compass offsets |
|
if(offsets.length() > 500) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high")); |
|
} |
|
return; |
|
} |
|
|
|
// check for unreasonable mag field length |
|
float mag_field = compass.get_field().length(); |
|
if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field")); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
// check GPS |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) { |
|
// check gps is ok if required - note this same check is repeated again in arm_checks |
|
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) { |
|
return; |
|
} |
|
|
|
#if AC_FENCE == ENABLED |
|
// check fence is initialised |
|
if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && !pre_arm_gps_checks(display_failure))) { |
|
return; |
|
} |
|
#endif |
|
} |
|
|
|
// check INS |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { |
|
// check accelerometers have been calibrated |
|
if(!ins.calibrated()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated")); |
|
} |
|
return; |
|
} |
|
|
|
// check accels and gyros are healthy |
|
if(!ins.healthy()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not healthy")); |
|
} |
|
return; |
|
} |
|
} |
|
#if CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN |
|
#ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 |
|
// check board voltage |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { |
|
if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage")); |
|
} |
|
return; |
|
} |
|
} |
|
#endif |
|
#endif |
|
|
|
// check various parameter values |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { |
|
|
|
// ensure ch7 and ch8 have different functions |
|
if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Opt cannot be same")); |
|
} |
|
return; |
|
} |
|
|
|
// failsafe parameter checks |
|
if (g.failsafe_throttle) { |
|
// check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 |
|
if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE")); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
// lean angle parameter check |
|
if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX")); |
|
} |
|
return; |
|
} |
|
|
|
// acro balance parameter check |
|
if ((g.acro_balance_roll > g.p_stabilize_roll.kP()) || (g.acro_balance_pitch > g.p_stabilize_pitch.kP())) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH")); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
// if we've gotten this far then pre arm checks have completed |
|
set_pre_arm_check(true); |
|
} |
|
|
|
// perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag |
|
static void pre_arm_rc_checks() |
|
{ |
|
// exit immediately if we've already successfully performed the pre-arm rc check |
|
if( ap.pre_arm_rc_check ) { |
|
return; |
|
} |
|
|
|
// set rc-checks to success if RC checks are disabled |
|
if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { |
|
set_pre_arm_rc_check(true); |
|
return; |
|
} |
|
|
|
// check if radio has been calibrated |
|
if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) { |
|
return; |
|
} |
|
|
|
// check channels 1 & 2 have min <= 1300 and max >= 1700 |
|
if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) { |
|
return; |
|
} |
|
|
|
// check channels 3 & 4 have min <= 1300 and max >= 1700 |
|
if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) { |
|
return; |
|
} |
|
|
|
// if we've gotten this far rc is ok |
|
set_pre_arm_rc_check(true); |
|
} |
|
|
|
// performs pre_arm gps related checks and returns true if passed |
|
static bool pre_arm_gps_checks(bool display_failure) |
|
{ |
|
float speed_cms = inertial_nav.get_velocity().length(); // speed according to inertial nav in cm/s |
|
|
|
// check GPS is not glitching |
|
if (gps_glitch.glitching()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: GPS Glitch")); |
|
} |
|
return false; |
|
} |
|
|
|
// ensure GPS is ok |
|
if (!GPS_ok()) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Need 3D Fix")); |
|
} |
|
return false; |
|
} |
|
|
|
// check speed is below 50cm/s |
|
if (speed_cms == 0 || speed_cms > PREARM_MAX_VELOCITY_CMS) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad Velocity")); |
|
} |
|
return false; |
|
} |
|
|
|
// warn about hdop separately - to prevent user confusion with no gps lock |
|
if (gps.get_hdop() > g.gps_hdop_good) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP")); |
|
} |
|
return false; |
|
} |
|
|
|
// if we got here all must be ok |
|
return true; |
|
} |
|
|
|
// arm_checks - perform final checks before arming |
|
// always called just before arming. Return true if ok to arm |
|
static bool arm_checks(bool display_failure) |
|
{ |
|
// succeed if arming checks are disabled |
|
if (g.arming_check == ARMING_CHECK_NONE) { |
|
return true; |
|
} |
|
|
|
// check Baro & inav alt are within 1m |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { |
|
if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Alt disparity")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check gps is ok if required - note this same check is also done in pre-arm checks |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) { |
|
if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) { |
|
return false; |
|
} |
|
} |
|
|
|
// check parameters |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { |
|
// check throttle is above failsafe throttle |
|
if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Thr below FS")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check lean angle |
|
if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { |
|
if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning")); |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// check if safety switch has been pushed |
|
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { |
|
if (display_failure) { |
|
gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch")); |
|
} |
|
return false; |
|
} |
|
|
|
// if we've gotten this far all is ok |
|
return true; |
|
} |
|
|
|
// init_disarm_motors - disarm motors |
|
static void init_disarm_motors() |
|
{ |
|
// return immediately if we are already disarmed |
|
if (!motors.armed()) { |
|
return; |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); |
|
#endif |
|
|
|
motors.armed(false); |
|
|
|
// disable inertial nav errors temporarily |
|
inertial_nav.ignore_next_error(); |
|
|
|
compass.save_offsets(); |
|
|
|
g.throttle_cruise.save(); |
|
|
|
#if AUTOTUNE_ENABLED == ENABLED |
|
// save auto tuned parameters |
|
autotune_save_tuning_gains(); |
|
#endif |
|
|
|
// we are not in the air |
|
set_land_complete(true); |
|
|
|
// setup fast AHRS gains to get right attitude |
|
ahrs.set_fast_gains(true); |
|
|
|
// log disarm to the dataflash |
|
Log_Write_Event(DATA_DISARMED); |
|
|
|
// suspend logging |
|
DataFlash.EnableWrites(false); |
|
|
|
// disable gps velocity based centrefugal force compensation |
|
ahrs.set_correct_centrifugal(false); |
|
ahrs.set_armed(false); |
|
} |
|
|
|
/***************************************** |
|
* Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
static void |
|
set_servos_4() |
|
{ |
|
// check if we are performing the motor test |
|
if (ap.motor_test) { |
|
motor_test_output(); |
|
} else { |
|
#if FRAME_CONFIG == TRI_FRAME |
|
// To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors |
|
g.rc_3.servo_out = min(g.rc_3.servo_out, 800); |
|
#endif |
|
motors.output(); |
|
} |
|
} |
|
|
|
// servo_write - writes to a servo after checking the channel is not used for a motor |
|
static void servo_write(uint8_t ch, uint16_t pwm) |
|
{ |
|
bool servo_ok = false; |
|
|
|
#if (FRAME_CONFIG == QUAD_FRAME || FRAME_CONFIG == COAX_FRAME) |
|
// Quads can use RC5 and higher as servos |
|
if (ch >= CH_5) servo_ok = true; |
|
#elif (FRAME_CONFIG == TRI_FRAME || FRAME_CONFIG == SINGLE_FRAME) |
|
// Tri's and Singles can use RC5, RC6, RC8 and higher |
|
if (ch == CH_5 || ch == CH_6 || ch >= CH_8) servo_ok = true; |
|
#elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME) |
|
// Hexa and Y6 can use RC7 and higher |
|
if (ch >= CH_7) servo_ok = true; |
|
#elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME) |
|
// Octa and X8 can use RC9 and higher |
|
if (ch >= CH_9) servo_ok = true; |
|
#elif (FRAME_CONFIG == HELI_FRAME) |
|
// Heli's can use RC5, RC6, RC7, not RC8, and higher |
|
if (ch == CH_5 || ch == CH_6 || ch == CH_7 || ch >= CH_9) servo_ok = true; |
|
#else |
|
// throw compile error if frame type is unrecognise |
|
#error Unrecognised frame type |
|
#endif |
|
|
|
if (servo_ok) { |
|
hal.rcout->enable_ch(ch); |
|
hal.rcout->write(ch, pwm); |
|
} |
|
}
|
|
|