You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
15 KiB
421 lines
15 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsMatrix.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_MotorsMatrix.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// Init |
|
void AP_MotorsMatrix::Init() |
|
{ |
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsMatrix::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
uint8_t i; |
|
|
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// check each enabled motor |
|
uint32_t mask = 0; |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
mask |= 1U << i; |
|
} |
|
} |
|
rc_set_freq( mask, _speed_hz ); |
|
} |
|
|
|
// set frame orientation (normally + or X) |
|
void AP_MotorsMatrix::set_frame_orientation( uint8_t new_orientation ) |
|
{ |
|
// return if nothing has changed |
|
if( new_orientation == _flags.frame_orientation ) { |
|
return; |
|
} |
|
|
|
// call parent |
|
AP_Motors::set_frame_orientation( new_orientation ); |
|
|
|
// setup the motors |
|
setup_motors(); |
|
|
|
// enable fast channels or instant pwm |
|
set_update_rate(_speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsMatrix::enable() |
|
{ |
|
int8_t i; |
|
|
|
// enable output channels |
|
for( i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
if( motor_enabled[i] ) { |
|
rc_enable_ch(i); |
|
} |
|
} |
|
} |
|
|
|
void AP_MotorsMatrix::output_to_motors() |
|
{ |
|
int8_t i; |
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final pwm values sent to the motor |
|
|
|
switch (_multicopter_flags.spool_mode) { |
|
case SHUT_DOWN: |
|
// sends minimum values out to the motors |
|
// set motor output based on thrust requests |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = _throttle_radio_min; |
|
} |
|
} |
|
break; |
|
case SPIN_WHEN_ARMED: |
|
// sends output to motors when armed but not flying |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle); |
|
} |
|
} |
|
break; |
|
case SPOOL_UP: |
|
case THROTTLE_UNLIMITED: |
|
case SPOOL_DOWN: |
|
// set motor output based on thrust requests |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = calc_thrust_to_pwm(_thrust_rpyt_out[i]); |
|
} |
|
} |
|
break; |
|
} |
|
|
|
// send output to each motor |
|
hal.rcout->cork(); |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rc_write(i, motor_out[i]); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsMatrix::get_motor_mask() |
|
{ |
|
uint16_t mask = 0; |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
mask |= 1U << i; |
|
} |
|
} |
|
return rc_map_mask(mask); |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
// includes new scaling stability patch |
|
void AP_MotorsMatrix::output_armed_stabilizing() |
|
{ |
|
uint8_t i; // general purpose counter |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 |
|
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing |
|
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy |
|
float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits |
|
float rpy_low = 0.0f; // lowest motor value |
|
float rpy_high = 0.0f; // highest motor value |
|
float yaw_allowed = 1.0f; // amount of yaw we can fit in |
|
float unused_range; // amount of yaw we can fit in the current channel |
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy |
|
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0 |
|
|
|
// apply voltage and air pressure compensation |
|
roll_thrust = _roll_in * get_compensation_gain(); |
|
pitch_thrust = _pitch_in * get_compensation_gain(); |
|
yaw_thrust = _yaw_in * get_compensation_gain(); |
|
throttle_thrust = get_throttle() * get_compensation_gain(); |
|
|
|
// sanity check throttle is above zero and below current limited throttle |
|
if (throttle_thrust <= 0.0f) { |
|
throttle_thrust = 0.0f; |
|
limit.throttle_lower = true; |
|
} |
|
if (throttle_thrust >= _throttle_thrust_max) { |
|
throttle_thrust = _throttle_thrust_max; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix); |
|
|
|
// calculate throttle that gives most possible room for yaw which is the lower of: |
|
// 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible margin above the highest motor and below the lowest |
|
// 2. the higher of: |
|
// a) the pilot's throttle input |
|
// b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle |
|
// Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. |
|
// Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. |
|
// We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control) |
|
// We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it |
|
|
|
// calculate amount of yaw we can fit into the throttle range |
|
// this is always equal to or less than the requested yaw from the pilot or rate controller |
|
|
|
throttle_thrust_best_rpy = MIN(0.5f, throttle_thrust_rpy_mix); |
|
|
|
// calculate roll and pitch for each motor |
|
// calculate the amount of yaw input that each motor can accept |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = roll_thrust * _roll_factor[i] + pitch_thrust * _pitch_factor[i]; |
|
if (!is_zero(_yaw_factor[i])){ |
|
if (yaw_thrust * _yaw_factor[i] > 0.0f) { |
|
unused_range = fabsf((1.0f - (throttle_thrust_best_rpy + _thrust_rpyt_out[i]))/_yaw_factor[i]); |
|
if (yaw_allowed > unused_range) { |
|
yaw_allowed = unused_range; |
|
} |
|
} else { |
|
unused_range = fabsf((throttle_thrust_best_rpy + _thrust_rpyt_out[i])/_yaw_factor[i]); |
|
if (yaw_allowed > unused_range) { |
|
yaw_allowed = unused_range; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// todo: make _yaw_headroom 0 to 1 |
|
yaw_allowed = MAX(yaw_allowed, (float)_yaw_headroom/1000.0f); |
|
|
|
if (fabsf(yaw_thrust) > yaw_allowed) { |
|
yaw_thrust = constrain_float(yaw_thrust, -yaw_allowed, yaw_allowed); |
|
limit.yaw = true; |
|
} |
|
|
|
// add yaw to intermediate numbers for each motor |
|
rpy_low = 0.0f; |
|
rpy_high = 0.0f; |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = _thrust_rpyt_out[i] + yaw_thrust * _yaw_factor[i]; |
|
|
|
// record lowest roll+pitch+yaw command |
|
if (_thrust_rpyt_out[i] < rpy_low) { |
|
rpy_low = _thrust_rpyt_out[i]; |
|
} |
|
// record highest roll+pitch+yaw command |
|
if (_thrust_rpyt_out[i] > rpy_high) { |
|
rpy_high = _thrust_rpyt_out[i]; |
|
} |
|
} |
|
} |
|
|
|
// check everything fits |
|
throttle_thrust_best_rpy = MIN(0.5f - (rpy_low+rpy_high)/2.0, throttle_thrust_rpy_mix); |
|
if (is_zero(rpy_low)){ |
|
rpy_scale = 1.0f; |
|
} else { |
|
rpy_scale = constrain_float(-throttle_thrust_best_rpy/rpy_low, 0.0f, 1.0f); |
|
} |
|
|
|
// calculate how close the motors can come to the desired throttle |
|
thr_adj = throttle_thrust - throttle_thrust_best_rpy; |
|
if (rpy_scale < 1.0f){ |
|
// Full range is being used by roll, pitch, and yaw. |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
if (thr_adj > 0.0f) { |
|
limit.throttle_upper = true; |
|
} |
|
thr_adj = 0.0f; |
|
} else { |
|
if (thr_adj < -(throttle_thrust_best_rpy+rpy_low)){ |
|
// Throttle can't be reduced to desired value |
|
thr_adj = -(throttle_thrust_best_rpy+rpy_low); |
|
} else if (thr_adj > 1.0f - (throttle_thrust_best_rpy+rpy_high)){ |
|
// Throttle can't be increased to desired value |
|
thr_adj = 1.0f - (throttle_thrust_best_rpy+rpy_high); |
|
limit.throttle_upper = true; |
|
} |
|
} |
|
|
|
// add scaled roll, pitch, constrained yaw and throttle for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = throttle_thrust_best_rpy + thr_adj + rpy_scale*_thrust_rpyt_out[i]; |
|
} |
|
} |
|
|
|
// constrain all outputs to 0.0f to 1.0f |
|
// test code should be run with these lines commented out as they should not do anything |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i], 0.0f, 1.0f); |
|
} |
|
} |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsMatrix::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// loop through all the possible orders spinning any motors that match that description |
|
hal.rcout->cork(); |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i] && _test_order[i] == motor_seq) { |
|
// turn on this motor |
|
rc_write(i, pwm); |
|
} |
|
} |
|
hal.rcout->push(); |
|
} |
|
|
|
// add_motor |
|
void AP_MotorsMatrix::add_motor_raw(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, uint8_t testing_order) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
|
|
// increment number of motors if this motor is being newly motor_enabled |
|
if( !motor_enabled[motor_num] ) { |
|
motor_enabled[motor_num] = true; |
|
} |
|
|
|
// set roll, pitch, thottle factors and opposite motor (for stability patch) |
|
_roll_factor[motor_num] = roll_fac; |
|
_pitch_factor[motor_num] = pitch_fac; |
|
_yaw_factor[motor_num] = yaw_fac; |
|
|
|
// set order that motor appears in test |
|
_test_order[motor_num] = testing_order; |
|
|
|
// call parent class method |
|
add_motor_num(motor_num); |
|
} |
|
} |
|
|
|
// add_motor using just position and prop direction - assumes that for each motor, roll and pitch factors are equal |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float angle_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor(motor_num, angle_degrees, angle_degrees, yaw_factor, testing_order); |
|
} |
|
|
|
// add_motor using position and prop direction. Roll and Pitch factors can differ (for asymmetrical frames) |
|
void AP_MotorsMatrix::add_motor(int8_t motor_num, float roll_factor_in_degrees, float pitch_factor_in_degrees, float yaw_factor, uint8_t testing_order) |
|
{ |
|
add_motor_raw( |
|
motor_num, |
|
cosf(radians(roll_factor_in_degrees + 90)), |
|
cosf(radians(pitch_factor_in_degrees)), |
|
yaw_factor, |
|
testing_order); |
|
} |
|
|
|
// remove_motor - disabled motor and clears all roll, pitch, throttle factors for this motor |
|
void AP_MotorsMatrix::remove_motor(int8_t motor_num) |
|
{ |
|
// ensure valid motor number is provided |
|
if( motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS ) { |
|
// disable the motor, set all factors to zero |
|
motor_enabled[motor_num] = false; |
|
_roll_factor[motor_num] = 0; |
|
_pitch_factor[motor_num] = 0; |
|
_yaw_factor[motor_num] = 0; |
|
} |
|
} |
|
|
|
// remove_all_motors - removes all motor definitions |
|
void AP_MotorsMatrix::remove_all_motors() |
|
{ |
|
for( int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++ ) { |
|
remove_motor(i); |
|
} |
|
} |
|
|
|
// normalizes the roll, pitch and yaw factors so maximum magnitude is 0.5 |
|
void AP_MotorsMatrix::normalise_rpy_factors() |
|
{ |
|
float roll_fac = 0.0f; |
|
float pitch_fac = 0.0f; |
|
float yaw_fac = 0.0f; |
|
|
|
// find maximum roll, pitch and yaw factors |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
if (roll_fac < fabsf(_roll_factor[i])) { |
|
roll_fac = fabsf(_roll_factor[i]); |
|
} |
|
if (pitch_fac < fabsf(_pitch_factor[i])) { |
|
pitch_fac = fabsf(_pitch_factor[i]); |
|
} |
|
if (yaw_fac < fabsf(_yaw_factor[i])) { |
|
yaw_fac = fabsf(_yaw_factor[i]); |
|
} |
|
} |
|
} |
|
|
|
// scale factors back to -0.5 to +0.5 for each axis |
|
for (uint8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
if (!is_zero(roll_fac)) { |
|
_roll_factor[i] = 0.5f*_roll_factor[i]/roll_fac; |
|
} |
|
if (!is_zero(pitch_fac)) { |
|
_pitch_factor[i] = 0.5f*_pitch_factor[i]/pitch_fac; |
|
} |
|
if (!is_zero(yaw_fac)) { |
|
_yaw_factor[i] = 0.5f*_yaw_factor[i]/yaw_fac; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
call vehicle supplied thrust compensation if set. This allows |
|
vehicle code to compensate for vehicle specific motor arrangements |
|
such as tiltrotors or tiltwings |
|
*/ |
|
void AP_MotorsMatrix::thrust_compensation(void) |
|
{ |
|
if (_thrust_compensation_callback) { |
|
_thrust_compensation_callback(_thrust_rpyt_out, AP_MOTORS_MAX_NUM_MOTORS); |
|
} |
|
}
|
|
|