You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
688 lines
20 KiB
688 lines
20 KiB
/* |
|
** $Id: ltable.c,v 2.118.1.4 2018/06/08 16:22:51 roberto Exp $ |
|
** Lua tables (hash) |
|
** See Copyright Notice in lua.h |
|
*/ |
|
|
|
#define ltable_c |
|
#define LUA_CORE |
|
|
|
#include "lprefix.h" |
|
|
|
|
|
/* |
|
** Implementation of tables (aka arrays, objects, or hash tables). |
|
** Tables keep its elements in two parts: an array part and a hash part. |
|
** Non-negative integer keys are all candidates to be kept in the array |
|
** part. The actual size of the array is the largest 'n' such that |
|
** more than half the slots between 1 and n are in use. |
|
** Hash uses a mix of chained scatter table with Brent's variation. |
|
** A main invariant of these tables is that, if an element is not |
|
** in its main position (i.e. the 'original' position that its hash gives |
|
** to it), then the colliding element is in its own main position. |
|
** Hence even when the load factor reaches 100%, performance remains good. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <limits.h> |
|
|
|
#include "lua.h" |
|
|
|
#include "ldebug.h" |
|
#include "ldo.h" |
|
#include "lgc.h" |
|
#include "lmem.h" |
|
#include "lobject.h" |
|
#include "lstate.h" |
|
#include "lstring.h" |
|
#include "ltable.h" |
|
#include "lvm.h" |
|
|
|
|
|
/* |
|
** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is |
|
** the largest integer such that MAXASIZE fits in an unsigned int. |
|
*/ |
|
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
|
#define MAXASIZE (1u << MAXABITS) |
|
|
|
/* |
|
** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest |
|
** integer such that 2^MAXHBITS fits in a signed int. (Note that the |
|
** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still |
|
** fits comfortably in an unsigned int.) |
|
*/ |
|
#define MAXHBITS (MAXABITS - 1) |
|
|
|
|
|
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
|
|
|
#define hashstr(t,str) hashpow2(t, (str)->hash) |
|
#define hashboolean(t,p) hashpow2(t, p) |
|
#define hashint(t,i) hashpow2(t, i) |
|
|
|
|
|
/* |
|
** for some types, it is better to avoid modulus by power of 2, as |
|
** they tend to have many 2 factors. |
|
*/ |
|
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
|
|
|
|
|
#define hashpointer(t,p) hashmod(t, point2uint(p)) |
|
|
|
|
|
#define dummynode (&dummynode_) |
|
|
|
static const Node dummynode_ = { |
|
{NILCONSTANT}, /* value */ |
|
{{NILCONSTANT, 0}} /* key */ |
|
}; |
|
|
|
|
|
/* |
|
** Hash for floating-point numbers. |
|
** The main computation should be just |
|
** n = frexp(n, &i); return (n * INT_MAX) + i |
|
** but there are some numerical subtleties. |
|
** In a two-complement representation, INT_MAX does not has an exact |
|
** representation as a float, but INT_MIN does; because the absolute |
|
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
|
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
|
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
|
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
|
** INT_MIN. |
|
*/ |
|
#if !defined(l_hashfloat) |
|
static int l_hashfloat (lua_Number n) { |
|
int i; |
|
lua_Integer ni; |
|
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
|
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
|
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
|
return 0; |
|
} |
|
else { /* normal case */ |
|
unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni); |
|
return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u); |
|
} |
|
} |
|
#endif |
|
|
|
|
|
/* |
|
** returns the 'main' position of an element in a table (that is, the index |
|
** of its hash value) |
|
*/ |
|
static Node *mainposition (const Table *t, const TValue *key) { |
|
switch (ttype(key)) { |
|
case LUA_TNUMINT: |
|
return hashint(t, ivalue(key)); |
|
case LUA_TNUMFLT: |
|
return hashmod(t, l_hashfloat(fltvalue(key))); |
|
case LUA_TSHRSTR: |
|
return hashstr(t, tsvalue(key)); |
|
case LUA_TLNGSTR: |
|
return hashpow2(t, luaS_hashlongstr(tsvalue(key))); |
|
case LUA_TBOOLEAN: |
|
return hashboolean(t, bvalue(key)); |
|
case LUA_TLIGHTUSERDATA: |
|
return hashpointer(t, pvalue(key)); |
|
case LUA_TLCF: |
|
return hashpointer(t, fvalue(key)); |
|
default: |
|
lua_assert(!ttisdeadkey(key)); |
|
return hashpointer(t, gcvalue(key)); |
|
} |
|
} |
|
|
|
|
|
/* |
|
** returns the index for 'key' if 'key' is an appropriate key to live in |
|
** the array part of the table, 0 otherwise. |
|
*/ |
|
static unsigned int arrayindex (const TValue *key) { |
|
if (ttisinteger(key)) { |
|
lua_Integer k = ivalue(key); |
|
if (0 < k && (lua_Unsigned)k <= MAXASIZE) |
|
return cast(unsigned int, k); /* 'key' is an appropriate array index */ |
|
} |
|
return 0; /* 'key' did not match some condition */ |
|
} |
|
|
|
|
|
/* |
|
** returns the index of a 'key' for table traversals. First goes all |
|
** elements in the array part, then elements in the hash part. The |
|
** beginning of a traversal is signaled by 0. |
|
*/ |
|
static unsigned int findindex (lua_State *L, Table *t, StkId key) { |
|
unsigned int i; |
|
if (ttisnil(key)) return 0; /* first iteration */ |
|
i = arrayindex(key); |
|
if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */ |
|
return i; /* yes; that's the index */ |
|
else { |
|
int nx; |
|
Node *n = mainposition(t, key); |
|
for (;;) { /* check whether 'key' is somewhere in the chain */ |
|
/* key may be dead already, but it is ok to use it in 'next' */ |
|
if (luaV_rawequalobj(gkey(n), key) || |
|
(ttisdeadkey(gkey(n)) && iscollectable(key) && |
|
deadvalue(gkey(n)) == gcvalue(key))) { |
|
i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
|
/* hash elements are numbered after array ones */ |
|
return (i + 1) + t->sizearray; |
|
} |
|
nx = gnext(n); |
|
if (nx == 0) |
|
luaG_runerror(L, "invalid key to 'next'"); /* key not found */ |
|
else n += nx; |
|
} |
|
} |
|
} |
|
|
|
|
|
int luaH_next (lua_State *L, Table *t, StkId key) { |
|
unsigned int i = findindex(L, t, key); /* find original element */ |
|
for (; i < t->sizearray; i++) { /* try first array part */ |
|
if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
|
setivalue(key, i + 1); |
|
setobj2s(L, key+1, &t->array[i]); |
|
return 1; |
|
} |
|
} |
|
for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */ |
|
if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
|
setobj2s(L, key, gkey(gnode(t, i))); |
|
setobj2s(L, key+1, gval(gnode(t, i))); |
|
return 1; |
|
} |
|
} |
|
return 0; /* no more elements */ |
|
} |
|
|
|
|
|
/* |
|
** {============================================================= |
|
** Rehash |
|
** ============================================================== |
|
*/ |
|
|
|
/* |
|
** Compute the optimal size for the array part of table 't'. 'nums' is a |
|
** "count array" where 'nums[i]' is the number of integers in the table |
|
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
|
** integer keys in the table and leaves with the number of keys that |
|
** will go to the array part; return the optimal size. |
|
*/ |
|
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { |
|
int i; |
|
unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
|
unsigned int a = 0; /* number of elements smaller than 2^i */ |
|
unsigned int na = 0; /* number of elements to go to array part */ |
|
unsigned int optimal = 0; /* optimal size for array part */ |
|
/* loop while keys can fill more than half of total size */ |
|
for (i = 0, twotoi = 1; |
|
twotoi > 0 && *pna > twotoi / 2; |
|
i++, twotoi *= 2) { |
|
if (nums[i] > 0) { |
|
a += nums[i]; |
|
if (a > twotoi/2) { /* more than half elements present? */ |
|
optimal = twotoi; /* optimal size (till now) */ |
|
na = a; /* all elements up to 'optimal' will go to array part */ |
|
} |
|
} |
|
} |
|
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
|
*pna = na; |
|
return optimal; |
|
} |
|
|
|
|
|
static int countint (const TValue *key, unsigned int *nums) { |
|
unsigned int k = arrayindex(key); |
|
if (k != 0) { /* is 'key' an appropriate array index? */ |
|
nums[luaO_ceillog2(k)]++; /* count as such */ |
|
return 1; |
|
} |
|
else |
|
return 0; |
|
} |
|
|
|
|
|
/* |
|
** Count keys in array part of table 't': Fill 'nums[i]' with |
|
** number of keys that will go into corresponding slice and return |
|
** total number of non-nil keys. |
|
*/ |
|
static unsigned int numusearray (const Table *t, unsigned int *nums) { |
|
int lg; |
|
unsigned int ttlg; /* 2^lg */ |
|
unsigned int ause = 0; /* summation of 'nums' */ |
|
unsigned int i = 1; /* count to traverse all array keys */ |
|
/* traverse each slice */ |
|
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
|
unsigned int lc = 0; /* counter */ |
|
unsigned int lim = ttlg; |
|
if (lim > t->sizearray) { |
|
lim = t->sizearray; /* adjust upper limit */ |
|
if (i > lim) |
|
break; /* no more elements to count */ |
|
} |
|
/* count elements in range (2^(lg - 1), 2^lg] */ |
|
for (; i <= lim; i++) { |
|
if (!ttisnil(&t->array[i-1])) |
|
lc++; |
|
} |
|
nums[lg] += lc; |
|
ause += lc; |
|
} |
|
return ause; |
|
} |
|
|
|
|
|
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { |
|
int totaluse = 0; /* total number of elements */ |
|
int ause = 0; /* elements added to 'nums' (can go to array part) */ |
|
int i = sizenode(t); |
|
while (i--) { |
|
Node *n = &t->node[i]; |
|
if (!ttisnil(gval(n))) { |
|
ause += countint(gkey(n), nums); |
|
totaluse++; |
|
} |
|
} |
|
*pna += ause; |
|
return totaluse; |
|
} |
|
|
|
|
|
static void setarrayvector (lua_State *L, Table *t, unsigned int size) { |
|
unsigned int i; |
|
luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
|
for (i=t->sizearray; i<size; i++) |
|
setnilvalue(&t->array[i]); |
|
t->sizearray = size; |
|
} |
|
|
|
|
|
static void setnodevector (lua_State *L, Table *t, unsigned int size) { |
|
if (size == 0) { /* no elements to hash part? */ |
|
t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
|
t->lsizenode = 0; |
|
t->lastfree = NULL; /* signal that it is using dummy node */ |
|
} |
|
else { |
|
int i; |
|
int lsize = luaO_ceillog2(size); |
|
if (lsize > MAXHBITS) |
|
luaG_runerror(L, "table overflow"); |
|
size = twoto(lsize); |
|
t->node = luaM_newvector(L, size, Node); |
|
for (i = 0; i < (int)size; i++) { |
|
Node *n = gnode(t, i); |
|
gnext(n) = 0; |
|
setnilvalue(wgkey(n)); |
|
setnilvalue(gval(n)); |
|
} |
|
t->lsizenode = cast_byte(lsize); |
|
t->lastfree = gnode(t, size); /* all positions are free */ |
|
} |
|
} |
|
|
|
|
|
typedef struct { |
|
Table *t; |
|
unsigned int nhsize; |
|
} AuxsetnodeT; |
|
|
|
|
|
static void auxsetnode (lua_State *L, void *ud) { |
|
AuxsetnodeT *asn = cast(AuxsetnodeT *, ud); |
|
setnodevector(L, asn->t, asn->nhsize); |
|
} |
|
|
|
|
|
void luaH_resize (lua_State *L, Table *t, unsigned int nasize, |
|
unsigned int nhsize) { |
|
unsigned int i; |
|
int j; |
|
AuxsetnodeT asn; |
|
unsigned int oldasize = t->sizearray; |
|
int oldhsize = allocsizenode(t); |
|
Node *nold = t->node; /* save old hash ... */ |
|
if (nasize > oldasize) /* array part must grow? */ |
|
setarrayvector(L, t, nasize); |
|
/* create new hash part with appropriate size */ |
|
asn.t = t; asn.nhsize = nhsize; |
|
if (luaD_rawrunprotected(L, auxsetnode, &asn) != LUA_OK) { /* mem. error? */ |
|
setarrayvector(L, t, oldasize); /* array back to its original size */ |
|
luaD_throw(L, LUA_ERRMEM); /* rethrow memory error */ |
|
} |
|
if (nasize < oldasize) { /* array part must shrink? */ |
|
t->sizearray = nasize; |
|
/* re-insert elements from vanishing slice */ |
|
for (i=nasize; i<oldasize; i++) { |
|
if (!ttisnil(&t->array[i])) |
|
luaH_setint(L, t, i + 1, &t->array[i]); |
|
} |
|
/* shrink array */ |
|
luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
|
} |
|
/* re-insert elements from hash part */ |
|
for (j = oldhsize - 1; j >= 0; j--) { |
|
Node *old = nold + j; |
|
if (!ttisnil(gval(old))) { |
|
/* doesn't need barrier/invalidate cache, as entry was |
|
already present in the table */ |
|
setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old)); |
|
} |
|
} |
|
if (oldhsize > 0) /* not the dummy node? */ |
|
luaM_freearray(L, nold, cast(size_t, oldhsize)); /* free old hash */ |
|
} |
|
|
|
|
|
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
|
int nsize = allocsizenode(t); |
|
luaH_resize(L, t, nasize, nsize); |
|
} |
|
|
|
/* |
|
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
|
*/ |
|
static void rehash (lua_State *L, Table *t, const TValue *ek) { |
|
unsigned int asize; /* optimal size for array part */ |
|
unsigned int na; /* number of keys in the array part */ |
|
unsigned int nums[MAXABITS + 1]; |
|
int i; |
|
int totaluse; |
|
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
|
na = numusearray(t, nums); /* count keys in array part */ |
|
totaluse = na; /* all those keys are integer keys */ |
|
totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
|
/* count extra key */ |
|
na += countint(ek, nums); |
|
totaluse++; |
|
/* compute new size for array part */ |
|
asize = computesizes(nums, &na); |
|
/* resize the table to new computed sizes */ |
|
luaH_resize(L, t, asize, totaluse - na); |
|
} |
|
|
|
|
|
|
|
/* |
|
** }============================================================= |
|
*/ |
|
|
|
|
|
Table *luaH_new (lua_State *L) { |
|
GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table)); |
|
Table *t = gco2t(o); |
|
t->metatable = NULL; |
|
t->flags = cast_byte(~0); |
|
t->array = NULL; |
|
t->sizearray = 0; |
|
setnodevector(L, t, 0); |
|
return t; |
|
} |
|
|
|
|
|
void luaH_free (lua_State *L, Table *t) { |
|
if (!isdummy(t)) |
|
luaM_freearray(L, t->node, cast(size_t, sizenode(t))); |
|
luaM_freearray(L, t->array, t->sizearray); |
|
luaM_free(L, t); |
|
} |
|
|
|
|
|
static Node *getfreepos (Table *t) { |
|
if (!isdummy(t)) { |
|
while (t->lastfree > t->node) { |
|
t->lastfree--; |
|
if (ttisnil(gkey(t->lastfree))) |
|
return t->lastfree; |
|
} |
|
} |
|
return NULL; /* could not find a free place */ |
|
} |
|
|
|
|
|
|
|
/* |
|
** inserts a new key into a hash table; first, check whether key's main |
|
** position is free. If not, check whether colliding node is in its main |
|
** position or not: if it is not, move colliding node to an empty place and |
|
** put new key in its main position; otherwise (colliding node is in its main |
|
** position), new key goes to an empty position. |
|
*/ |
|
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
|
Node *mp; |
|
TValue aux; |
|
if (ttisnil(key)) luaG_runerror(L, "table index is nil"); |
|
else if (ttisfloat(key)) { |
|
lua_Integer k; |
|
if (luaV_tointeger(key, &k, 0)) { /* does index fit in an integer? */ |
|
setivalue(&aux, k); |
|
key = &aux; /* insert it as an integer */ |
|
} |
|
else if (luai_numisnan(fltvalue(key))) |
|
luaG_runerror(L, "table index is NaN"); |
|
} |
|
mp = mainposition(t, key); |
|
if (!ttisnil(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
|
Node *othern; |
|
Node *f = getfreepos(t); /* get a free place */ |
|
if (f == NULL) { /* cannot find a free place? */ |
|
rehash(L, t, key); /* grow table */ |
|
/* whatever called 'newkey' takes care of TM cache */ |
|
return luaH_set(L, t, key); /* insert key into grown table */ |
|
} |
|
lua_assert(!isdummy(t)); |
|
othern = mainposition(t, gkey(mp)); |
|
if (othern != mp) { /* is colliding node out of its main position? */ |
|
/* yes; move colliding node into free position */ |
|
while (othern + gnext(othern) != mp) /* find previous */ |
|
othern += gnext(othern); |
|
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
|
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
|
if (gnext(mp) != 0) { |
|
gnext(f) += cast_int(mp - f); /* correct 'next' */ |
|
gnext(mp) = 0; /* now 'mp' is free */ |
|
} |
|
setnilvalue(gval(mp)); |
|
} |
|
else { /* colliding node is in its own main position */ |
|
/* new node will go into free position */ |
|
if (gnext(mp) != 0) |
|
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
|
else lua_assert(gnext(f) == 0); |
|
gnext(mp) = cast_int(f - mp); |
|
mp = f; |
|
} |
|
} |
|
setnodekey(L, &mp->i_key, key); |
|
luaC_barrierback(L, t, key); |
|
lua_assert(ttisnil(gval(mp))); |
|
return gval(mp); |
|
} |
|
|
|
|
|
/* |
|
** search function for integers |
|
*/ |
|
const TValue *luaH_getint (Table *t, lua_Integer key) { |
|
/* (1 <= key && key <= t->sizearray) */ |
|
if (l_castS2U(key) - 1 < t->sizearray) |
|
return &t->array[key - 1]; |
|
else { |
|
Node *n = hashint(t, key); |
|
for (;;) { /* check whether 'key' is somewhere in the chain */ |
|
if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key) |
|
return gval(n); /* that's it */ |
|
else { |
|
int nx = gnext(n); |
|
if (nx == 0) break; |
|
n += nx; |
|
} |
|
} |
|
return luaO_nilobject; |
|
} |
|
} |
|
|
|
|
|
/* |
|
** search function for short strings |
|
*/ |
|
const TValue *luaH_getshortstr (Table *t, TString *key) { |
|
Node *n = hashstr(t, key); |
|
lua_assert(key->tt == LUA_TSHRSTR); |
|
for (;;) { /* check whether 'key' is somewhere in the chain */ |
|
const TValue *k = gkey(n); |
|
if (ttisshrstring(k) && eqshrstr(tsvalue(k), key)) |
|
return gval(n); /* that's it */ |
|
else { |
|
int nx = gnext(n); |
|
if (nx == 0) |
|
return luaO_nilobject; /* not found */ |
|
n += nx; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
** "Generic" get version. (Not that generic: not valid for integers, |
|
** which may be in array part, nor for floats with integral values.) |
|
*/ |
|
static const TValue *getgeneric (Table *t, const TValue *key) { |
|
Node *n = mainposition(t, key); |
|
for (;;) { /* check whether 'key' is somewhere in the chain */ |
|
if (luaV_rawequalobj(gkey(n), key)) |
|
return gval(n); /* that's it */ |
|
else { |
|
int nx = gnext(n); |
|
if (nx == 0) |
|
return luaO_nilobject; /* not found */ |
|
n += nx; |
|
} |
|
} |
|
} |
|
|
|
|
|
const TValue *luaH_getstr (Table *t, TString *key) { |
|
if (key->tt == LUA_TSHRSTR) |
|
return luaH_getshortstr(t, key); |
|
else { /* for long strings, use generic case */ |
|
TValue ko; |
|
setsvalue(cast(lua_State *, NULL), &ko, key); |
|
return getgeneric(t, &ko); |
|
} |
|
} |
|
|
|
|
|
/* |
|
** main search function |
|
*/ |
|
const TValue *luaH_get (Table *t, const TValue *key) { |
|
switch (ttype(key)) { |
|
case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key)); |
|
case LUA_TNUMINT: return luaH_getint(t, ivalue(key)); |
|
case LUA_TNIL: return luaO_nilobject; |
|
case LUA_TNUMFLT: { |
|
lua_Integer k; |
|
if (luaV_tointeger(key, &k, 0)) /* index is int? */ |
|
return luaH_getint(t, k); /* use specialized version */ |
|
/* else... */ |
|
} /* FALLTHROUGH */ |
|
default: |
|
return getgeneric(t, key); |
|
} |
|
} |
|
|
|
|
|
/* |
|
** beware: when using this function you probably need to check a GC |
|
** barrier and invalidate the TM cache. |
|
*/ |
|
TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
|
const TValue *p = luaH_get(t, key); |
|
if (p != luaO_nilobject) |
|
return cast(TValue *, p); |
|
else return luaH_newkey(L, t, key); |
|
} |
|
|
|
|
|
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
|
const TValue *p = luaH_getint(t, key); |
|
TValue *cell; |
|
if (p != luaO_nilobject) |
|
cell = cast(TValue *, p); |
|
else { |
|
TValue k; |
|
setivalue(&k, key); |
|
cell = luaH_newkey(L, t, &k); |
|
} |
|
setobj2t(L, cell, value); |
|
} |
|
|
|
|
|
static lua_Unsigned unbound_search (Table *t, lua_Unsigned j) { |
|
lua_Unsigned i = j; /* i is zero or a present index */ |
|
j++; |
|
/* find 'i' and 'j' such that i is present and j is not */ |
|
while (!ttisnil(luaH_getint(t, j))) { |
|
i = j; |
|
if (j > l_castS2U(LUA_MAXINTEGER) / 2) { /* overflow? */ |
|
/* table was built with bad purposes: resort to linear search */ |
|
i = 1; |
|
while (!ttisnil(luaH_getint(t, i))) i++; |
|
return i - 1; |
|
} |
|
j *= 2; |
|
} |
|
/* now do a binary search between them */ |
|
while (j - i > 1) { |
|
lua_Unsigned m = (i+j)/2; |
|
if (ttisnil(luaH_getint(t, m))) j = m; |
|
else i = m; |
|
} |
|
return i; |
|
} |
|
|
|
|
|
/* |
|
** Try to find a boundary in table 't'. A 'boundary' is an integer index |
|
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
|
*/ |
|
lua_Unsigned luaH_getn (Table *t) { |
|
unsigned int j = t->sizearray; |
|
if (j > 0 && ttisnil(&t->array[j - 1])) { |
|
/* there is a boundary in the array part: (binary) search for it */ |
|
unsigned int i = 0; |
|
while (j - i > 1) { |
|
unsigned int m = (i+j)/2; |
|
if (ttisnil(&t->array[m - 1])) j = m; |
|
else i = m; |
|
} |
|
return i; |
|
} |
|
/* else must find a boundary in hash part */ |
|
else if (isdummy(t)) /* hash part is empty? */ |
|
return j; /* that is easy... */ |
|
else return unbound_search(t, j); |
|
} |
|
|
|
|
|
|
|
#if defined(LUA_DEBUG) |
|
|
|
Node *luaH_mainposition (const Table *t, const TValue *key) { |
|
return mainposition(t, key); |
|
} |
|
|
|
int luaH_isdummy (const Table *t) { return isdummy(t); } |
|
|
|
#endif
|
|
|