You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
567 lines
25 KiB
567 lines
25 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#include "AP_NavEKF3.h" |
|
#include "AP_NavEKF3_core.h" |
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Vehicle/AP_Vehicle.h> |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_GPS/AP_GPS.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
// Control filter mode transitions |
|
void NavEKF3_core::controlFilterModes() |
|
{ |
|
// Determine motor arm status |
|
prevMotorsArmed = motorsArmed; |
|
motorsArmed = hal.util->get_soft_armed(); |
|
if (motorsArmed && !prevMotorsArmed) { |
|
// set the time at which we arm to assist with checks |
|
timeAtArming_ms = imuSampleTime_ms; |
|
} |
|
|
|
// Detect if we are in flight on or ground |
|
detectFlight(); |
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to |
|
// avoid unnecessary operations |
|
setWindMagStateLearningMode(); |
|
|
|
// Check the alignmnent status of the tilt and yaw attitude |
|
// Used during initial bootstrap alignment of the filter |
|
checkAttitudeAlignmentStatus(); |
|
|
|
// Set the type of inertial navigation aiding used |
|
setAidingMode(); |
|
|
|
} |
|
|
|
/* |
|
return effective value for _magCal for this core |
|
*/ |
|
uint8_t NavEKF3_core::effective_magCal(void) const |
|
{ |
|
// force use of simple magnetic heading fusion for specified cores |
|
if (frontend->_magMask & core_index) { |
|
return 2; |
|
} else { |
|
return frontend->_magCal; |
|
} |
|
} |
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to |
|
// avoid unnecessary operations |
|
void NavEKF3_core::setWindMagStateLearningMode() |
|
{ |
|
// If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states |
|
bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE); |
|
if (!inhibitWindStates && setWindInhibit) { |
|
inhibitWindStates = true; |
|
updateStateIndexLim(); |
|
} else if (inhibitWindStates && !setWindInhibit) { |
|
inhibitWindStates = false; |
|
updateStateIndexLim(); |
|
// set states and variances |
|
if (yawAlignComplete && useAirspeed()) { |
|
// if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading |
|
// which assumes the vehicle has launched into the wind |
|
Vector3f tempEuler; |
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z); |
|
float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas; |
|
stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z); |
|
stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z); |
|
|
|
// set the wind sate variances to the measurement uncertainty |
|
for (uint8_t index=22; index<=23; index++) { |
|
P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(_ahrs->get_EAS2TAS(), 0.9f, 10.0f)); |
|
} |
|
} else { |
|
// set the variances using a typical wind speed |
|
for (uint8_t index=22; index<=23; index++) { |
|
P[index][index] = sq(5.0f); |
|
} |
|
} |
|
} |
|
|
|
// determine if the vehicle is manoeuvring |
|
if (accNavMagHoriz > 0.5f) { |
|
manoeuvring = true; |
|
} else { |
|
manoeuvring = false; |
|
} |
|
|
|
// Determine if learning of magnetic field states has been requested by the user |
|
uint8_t magCal = effective_magCal(); |
|
bool magCalRequested = |
|
((magCal == 0) && inFlight) || // when flying |
|
((magCal == 1) && manoeuvring) || // when manoeuvring |
|
((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete |
|
(magCal == 4); // all the time |
|
|
|
// Deny mag calibration request if we aren't using the compass, it has been inhibited by the user, |
|
// we do not have an absolute position reference or are on the ground (unless explicitly requested by the user) |
|
bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4); |
|
|
|
// Inhibit the magnetic field calibration if not requested or denied |
|
bool setMagInhibit = !magCalRequested || magCalDenied; |
|
if (!inhibitMagStates && setMagInhibit) { |
|
inhibitMagStates = true; |
|
updateStateIndexLim(); |
|
} else if (inhibitMagStates && !setMagInhibit) { |
|
inhibitMagStates = false; |
|
updateStateIndexLim(); |
|
if (magFieldLearned) { |
|
// if we have already learned the field states, then retain the learned variances |
|
P[16][16] = earthMagFieldVar.x; |
|
P[17][17] = earthMagFieldVar.y; |
|
P[18][18] = earthMagFieldVar.z; |
|
P[19][19] = bodyMagFieldVar.x; |
|
P[20][20] = bodyMagFieldVar.y; |
|
P[21][21] = bodyMagFieldVar.z; |
|
} else { |
|
// set the variances equal to the observation variances |
|
for (uint8_t index=18; index<=21; index++) { |
|
P[index][index] = sq(frontend->_magNoise); |
|
} |
|
|
|
// set the NE earth magnetic field states using the published declination |
|
// and set the corresponding variances and covariances |
|
alignMagStateDeclination(); |
|
|
|
} |
|
// request a reset of the yaw and magnetic field states if not done before |
|
if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) { |
|
magYawResetRequest = true; |
|
} |
|
} |
|
|
|
// inhibit delta velocity bias learning if we have not yet aligned the tilt |
|
if (tiltAlignComplete && inhibitDelVelBiasStates) { |
|
// activate the states |
|
inhibitDelVelBiasStates = false; |
|
updateStateIndexLim(); |
|
|
|
// set the initial covariance values |
|
P[13][13] = sq(ACCEL_BIAS_LIM_SCALER * frontend->_accBiasLim * dtEkfAvg); |
|
P[14][14] = P[13][13]; |
|
P[15][15] = P[13][13]; |
|
} |
|
|
|
if (tiltAlignComplete && inhibitDelAngBiasStates) { |
|
// activate the states |
|
inhibitDelAngBiasStates = false; |
|
updateStateIndexLim(); |
|
|
|
// set the initial covariance values |
|
P[10][10] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg)); |
|
P[11][11] = P[10][10]; |
|
P[12][12] = P[10][10]; |
|
} |
|
|
|
// If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed |
|
// because we want it re-done for each takeoff |
|
if (onGround) { |
|
finalInflightYawInit = false; |
|
finalInflightMagInit = false; |
|
} |
|
|
|
updateStateIndexLim(); |
|
} |
|
|
|
// Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations |
|
// if we are not using those states |
|
void NavEKF3_core::updateStateIndexLim() |
|
{ |
|
if (inhibitWindStates) { |
|
if (inhibitMagStates) { |
|
if (inhibitDelVelBiasStates) { |
|
if (inhibitDelAngBiasStates) { |
|
stateIndexLim = 9; |
|
} else { |
|
stateIndexLim = 12; |
|
} |
|
} else { |
|
stateIndexLim = 15; |
|
} |
|
} else { |
|
stateIndexLim = 21; |
|
} |
|
} else { |
|
stateIndexLim = 23; |
|
} |
|
} |
|
|
|
// Set inertial navigation aiding mode |
|
void NavEKF3_core::setAidingMode() |
|
{ |
|
// Save the previous status so we can detect when it has changed |
|
PV_AidingModePrev = PV_AidingMode; |
|
|
|
// Check that the gyro bias variance has converged |
|
checkGyroCalStatus(); |
|
|
|
// Determine if we should change aiding mode |
|
switch (PV_AidingMode) { |
|
case AID_NONE: { |
|
// Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete |
|
// and IMU gyro bias estimates have stabilised |
|
// If GPS usage has been prohiited then we use flow aiding provided optical flow data is present |
|
// GPS aiding is the preferred option unless excluded by the user |
|
if(readyToUseGPS() || readyToUseRangeBeacon()) { |
|
PV_AidingMode = AID_ABSOLUTE; |
|
} else if ((readyToUseOptFlow() && (frontend->_flowUse == FLOW_USE_NAV)) || readyToUseBodyOdm()) { |
|
PV_AidingMode = AID_RELATIVE; |
|
} |
|
break; |
|
} |
|
case AID_RELATIVE: { |
|
// Check if the fusion has timed out (flow measurements have been rejected for too long) |
|
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000); |
|
// Check if the fusion has timed out (body odometry measurements have been rejected for too long) |
|
bool bodyOdmFusionTimeout = ((imuSampleTime_ms - prevBodyVelFuseTime_ms) > 5000); |
|
// Enable switch to absolute position mode if GPS or range beacon data is available |
|
// If GPS or range beacons data is not available and flow fusion has timed out, then fall-back to no-aiding |
|
if(readyToUseGPS() || readyToUseRangeBeacon()) { |
|
PV_AidingMode = AID_ABSOLUTE; |
|
} else if (flowFusionTimeout && bodyOdmFusionTimeout) { |
|
PV_AidingMode = AID_NONE; |
|
} |
|
break; |
|
} |
|
case AID_ABSOLUTE: { |
|
// Find the minimum time without data required to trigger any check |
|
uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms)); |
|
|
|
// Check if optical flow data is being used |
|
bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms); |
|
|
|
// Check if body odometry data is being used |
|
bool bodyOdmUsed = (imuSampleTime_ms - prevBodyVelFuseTime_ms <= minTestTime_ms); |
|
|
|
// Check if airspeed data is being used |
|
bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms); |
|
|
|
// Check if range beacon data is being used |
|
bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms); |
|
|
|
// Check if GPS is being used |
|
bool gpsPosUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms); |
|
bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms); |
|
|
|
// Check if attitude drift has been constrained by a measurement source |
|
bool attAiding = gpsPosUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed || bodyOdmUsed; |
|
|
|
// check if velocity drift has been constrained by a measurement source |
|
bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed || bodyOdmUsed; |
|
|
|
// check if position drift has been constrained by a measurement source |
|
bool posAiding = gpsPosUsed || rngBcnUsed; |
|
|
|
// Check if the loss of attitude aiding has become critical |
|
bool attAidLossCritical = false; |
|
if (!attAiding) { |
|
attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) && |
|
(imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) && |
|
(imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) && |
|
(imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) && |
|
(imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms); |
|
} |
|
|
|
// Check if the loss of position accuracy has become critical |
|
bool posAidLossCritical = false; |
|
if (!posAiding ) { |
|
uint16_t maxLossTime_ms; |
|
if (!velAiding) { |
|
maxLossTime_ms = frontend->posRetryTimeNoVel_ms; |
|
} else { |
|
maxLossTime_ms = frontend->posRetryTimeUseVel_ms; |
|
} |
|
posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) && |
|
(imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms); |
|
} |
|
|
|
if (attAidLossCritical) { |
|
// if the loss of attitude data is critical, then put the filter into a constant position mode |
|
PV_AidingMode = AID_NONE; |
|
posTimeout = true; |
|
velTimeout = true; |
|
rngBcnTimeout = true; |
|
tasTimeout = true; |
|
gpsNotAvailable = true; |
|
} else if (posAidLossCritical) { |
|
// if the loss of position is critical, declare all sources of position aiding as being timed out |
|
posTimeout = true; |
|
velTimeout = true; |
|
rngBcnTimeout = true; |
|
gpsNotAvailable = true; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
// check to see if we are starting or stopping aiding and set states and modes as required |
|
if (PV_AidingMode != PV_AidingModePrev) { |
|
// set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped. |
|
switch (PV_AidingMode) { |
|
case AID_NONE: |
|
// We have ceased aiding |
|
gcs().send_text(MAV_SEVERITY_WARNING, "EKF3 IMU%u stopped aiding",(unsigned)imu_index); |
|
// When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors |
|
posTimeout = true; |
|
velTimeout = true; |
|
// Reset the normalised innovation to avoid false failing bad fusion tests |
|
velTestRatio = 0.0f; |
|
posTestRatio = 0.0f; |
|
// store the current position to be used to keep reporting the last known position |
|
lastKnownPositionNE.x = stateStruct.position.x; |
|
lastKnownPositionNE.y = stateStruct.position.y; |
|
// initialise filtered altitude used to provide a takeoff reference to current baro on disarm |
|
// this reduces the time required for the baro noise filter to settle before the filtered baro data can be used |
|
meaHgtAtTakeOff = baroDataDelayed.hgt; |
|
// reset the vertical position state to faster recover from baro errors experienced during touchdown |
|
stateStruct.position.z = -meaHgtAtTakeOff; |
|
// reset relative aiding sensor fusion activity status |
|
flowFusionActive = false; |
|
bodyVelFusionActive = false; |
|
break; |
|
|
|
case AID_RELATIVE: |
|
// We are doing relative position navigation where velocity errors are constrained, but position drift will occur |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u started relative aiding",(unsigned)imu_index); |
|
if (readyToUseOptFlow()) { |
|
// Reset time stamps |
|
flowValidMeaTime_ms = imuSampleTime_ms; |
|
prevFlowFuseTime_ms = imuSampleTime_ms; |
|
} else if (readyToUseBodyOdm()) { |
|
// Reset time stamps |
|
lastbodyVelPassTime_ms = imuSampleTime_ms; |
|
prevBodyVelFuseTime_ms = imuSampleTime_ms; |
|
} |
|
posTimeout = true; |
|
velTimeout = true; |
|
break; |
|
|
|
case AID_ABSOLUTE: |
|
if (readyToUseGPS()) { |
|
// We are commencing aiding using GPS - this is the preferred method |
|
posResetSource = GPS; |
|
velResetSource = GPS; |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u is using GPS",(unsigned)imu_index); |
|
} else if (readyToUseRangeBeacon()) { |
|
// We are commencing aiding using range beacons |
|
posResetSource = RNGBCN; |
|
velResetSource = DEFAULT; |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u is using range beacons",(unsigned)imu_index); |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y); |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffsetNED.z); |
|
} |
|
|
|
// clear timeout flags as a precaution to avoid triggering any additional transitions |
|
posTimeout = false; |
|
velTimeout = false; |
|
|
|
// reset the last fusion accepted times to prevent unwanted activation of timeout logic |
|
lastPosPassTime_ms = imuSampleTime_ms; |
|
lastVelPassTime_ms = imuSampleTime_ms; |
|
lastRngBcnPassTime_ms = imuSampleTime_ms; |
|
break; |
|
} |
|
|
|
// Always reset the position and velocity when changing mode |
|
ResetVelocity(); |
|
ResetPosition(); |
|
|
|
} |
|
|
|
} |
|
|
|
// Check the tilt and yaw alignmnent status |
|
// Used during initial bootstrap alignment of the filter |
|
void NavEKF3_core::checkAttitudeAlignmentStatus() |
|
{ |
|
// Check for tilt convergence - used during initial alignment |
|
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states |
|
// and declare the tilt alignment complete |
|
if (!tiltAlignComplete) { |
|
Vector3f angleErrVarVec = calcRotVecVariances(); |
|
if ((angleErrVarVec.x + angleErrVarVec.y) < sq(0.05235f)) { |
|
tiltAlignComplete = true; |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u tilt alignment complete",(unsigned)imu_index); |
|
} |
|
} |
|
|
|
// submit yaw and magnetic field reset request |
|
if (!yawAlignComplete && tiltAlignComplete && use_compass()) { |
|
magYawResetRequest = true; |
|
} |
|
|
|
} |
|
|
|
// return true if we should use the airspeed sensor |
|
bool NavEKF3_core::useAirspeed(void) const |
|
{ |
|
return _ahrs->airspeed_sensor_enabled(); |
|
} |
|
|
|
// return true if we should use the range finder sensor |
|
bool NavEKF3_core::useRngFinder(void) const |
|
{ |
|
// TO-DO add code to set this based in setting of optical flow use parameter and presence of sensor |
|
return true; |
|
} |
|
|
|
// return true if the filter is ready to start using optical flow measurements |
|
bool NavEKF3_core::readyToUseOptFlow(void) const |
|
{ |
|
// We need stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use optical flow |
|
return (imuSampleTime_ms - flowMeaTime_ms < 200) && tiltAlignComplete && delAngBiasLearned; |
|
} |
|
|
|
// return true if the filter is ready to start using body frame odometry measurements |
|
bool NavEKF3_core::readyToUseBodyOdm(void) const |
|
{ |
|
|
|
// Check for fresh visual odometry data that meets the accuracy required for alignment |
|
bool visoDataGood = (imuSampleTime_ms - bodyOdmMeasTime_ms < 200) && (bodyOdmDataNew.velErr < 1.0f); |
|
|
|
// Check for fresh wheel encoder data |
|
bool wencDataGood = (imuSampleTime_ms - wheelOdmMeasTime_ms < 200); |
|
|
|
// We require stable roll/pitch angles and gyro bias estimates but do not need the yaw angle aligned to use odometry measurements |
|
// because they are in a body frame of reference |
|
return (visoDataGood || wencDataGood) |
|
&& tiltAlignComplete |
|
&& delAngBiasLearned; |
|
} |
|
|
|
// return true if the filter to be ready to use gps |
|
bool NavEKF3_core::readyToUseGPS(void) const |
|
{ |
|
return validOrigin && tiltAlignComplete && yawAlignComplete && delAngBiasLearned && gpsGoodToAlign && (frontend->_fusionModeGPS != 3) && gpsDataToFuse && !gpsInhibit; |
|
} |
|
|
|
// return true if the filter to be ready to use the beacon range measurements |
|
bool NavEKF3_core::readyToUseRangeBeacon(void) const |
|
{ |
|
return tiltAlignComplete && yawAlignComplete && delAngBiasLearned && rngBcnAlignmentCompleted && rngBcnDataToFuse; |
|
} |
|
|
|
// return true if we should use the compass |
|
bool NavEKF3_core::use_compass(void) const |
|
{ |
|
return (frontend->_magCal != 5) && _ahrs->get_compass() && _ahrs->get_compass()->use_for_yaw(magSelectIndex) && !allMagSensorsFailed; |
|
} |
|
|
|
/* |
|
should we assume zero sideslip? |
|
*/ |
|
bool NavEKF3_core::assume_zero_sideslip(void) const |
|
{ |
|
// we don't assume zero sideslip for ground vehicles as EKF could |
|
// be quite sensitive to a rapid spin of the ground vehicle if |
|
// traction is lost |
|
return _ahrs->get_fly_forward() && _ahrs->get_vehicle_class() != AHRS_VEHICLE_GROUND; |
|
} |
|
|
|
// set the LLH location of the filters NED origin |
|
bool NavEKF3_core::setOriginLLH(const Location &loc) |
|
{ |
|
if (PV_AidingMode == AID_ABSOLUTE) { |
|
return false; |
|
} |
|
EKF_origin = loc; |
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt; |
|
// define Earth rotation vector in the NED navigation frame at the origin |
|
calcEarthRateNED(earthRateNED, loc.lat); |
|
validOrigin = true; |
|
return true; |
|
} |
|
|
|
// Set the NED origin to be used until the next filter reset |
|
void NavEKF3_core::setOrigin(const Location &loc) |
|
{ |
|
EKF_origin = loc; |
|
// if flying, correct for height change from takeoff so that the origin is at field elevation |
|
if (inFlight) { |
|
EKF_origin.alt += (int32_t)(100.0f * stateStruct.position.z); |
|
} |
|
ekfGpsRefHgt = (double)0.01 * (double)EKF_origin.alt; |
|
// define Earth rotation vector in the NED navigation frame at the origin |
|
calcEarthRateNED(earthRateNED, EKF_origin.lat); |
|
validOrigin = true; |
|
gcs().send_text(MAV_SEVERITY_INFO, "EKF3 IMU%u origin set",(unsigned)imu_index); |
|
|
|
// put origin in frontend as well to ensure it stays in sync between lanes |
|
frontend->common_EKF_origin = EKF_origin; |
|
frontend->common_origin_valid = true; |
|
} |
|
|
|
// record a yaw reset event |
|
void NavEKF3_core::recordYawReset() |
|
{ |
|
yawAlignComplete = true; |
|
if (inFlight) { |
|
finalInflightYawInit = true; |
|
} |
|
} |
|
|
|
// set the class variable true if the delta angle bias variances are sufficiently small |
|
void NavEKF3_core::checkGyroCalStatus(void) |
|
{ |
|
// check delta angle bias variances |
|
const float delAngBiasVarMax = sq(radians(0.15f * dtEkfAvg)); |
|
delAngBiasLearned = (P[10][10] <= delAngBiasVarMax) && |
|
(P[11][11] <= delAngBiasVarMax) && |
|
(P[12][12] <= delAngBiasVarMax); |
|
} |
|
|
|
// Commands the EKF to not use GPS. |
|
// This command must be sent prior to vehicle arming and EKF commencement of GPS usage |
|
// Returns 0 if command rejected |
|
// Returns 1 if command accepted |
|
uint8_t NavEKF3_core::setInhibitGPS(void) |
|
{ |
|
if((PV_AidingMode == AID_ABSOLUTE) || motorsArmed) { |
|
return 0; |
|
} else { |
|
gpsInhibit = true; |
|
return 1; |
|
} |
|
} |
|
|
|
// Update the filter status |
|
void NavEKF3_core::updateFilterStatus(void) |
|
{ |
|
// init return value |
|
filterStatus.value = 0; |
|
bool doingBodyVelNav = (PV_AidingMode != AID_NONE) && (imuSampleTime_ms - prevBodyVelFuseTime_ms < 5000); |
|
bool doingFlowNav = (PV_AidingMode != AID_NONE) && flowDataValid; |
|
bool doingWindRelNav = !tasTimeout && assume_zero_sideslip(); |
|
bool doingNormalGpsNav = !posTimeout && (PV_AidingMode == AID_ABSOLUTE); |
|
bool someVertRefData = (!velTimeout && useGpsVertVel) || !hgtTimeout; |
|
bool someHorizRefData = !(velTimeout && posTimeout && tasTimeout) || doingFlowNav || doingBodyVelNav; |
|
bool filterHealthy = healthy() && tiltAlignComplete && (yawAlignComplete || (!use_compass() && (PV_AidingMode != AID_ABSOLUTE))); |
|
|
|
// If GPS height usage is specified, height is considered to be inaccurate until the GPS passes all checks |
|
bool hgtNotAccurate = (frontend->_altSource == 2) && !validOrigin; |
|
|
|
// set individual flags |
|
filterStatus.flags.attitude = !stateStruct.quat.is_nan() && filterHealthy; // attitude valid (we need a better check) |
|
filterStatus.flags.horiz_vel = someHorizRefData && filterHealthy; // horizontal velocity estimate valid |
|
filterStatus.flags.vert_vel = someVertRefData && filterHealthy; // vertical velocity estimate valid |
|
filterStatus.flags.horiz_pos_rel = ((doingFlowNav && gndOffsetValid) || doingWindRelNav || doingNormalGpsNav || doingBodyVelNav) && filterHealthy; // relative horizontal position estimate valid |
|
filterStatus.flags.horiz_pos_abs = doingNormalGpsNav && filterHealthy; // absolute horizontal position estimate valid |
|
filterStatus.flags.vert_pos = !hgtTimeout && filterHealthy && !hgtNotAccurate; // vertical position estimate valid |
|
filterStatus.flags.terrain_alt = gndOffsetValid && filterHealthy; // terrain height estimate valid |
|
filterStatus.flags.const_pos_mode = (PV_AidingMode == AID_NONE) && filterHealthy; // constant position mode |
|
filterStatus.flags.pred_horiz_pos_rel = filterStatus.flags.horiz_pos_rel; // EKF3 enters the required mode before flight |
|
filterStatus.flags.pred_horiz_pos_abs = filterStatus.flags.horiz_pos_abs; // EKF3 enters the required mode before flight |
|
filterStatus.flags.takeoff_detected = takeOffDetected; // takeoff for optical flow navigation has been detected |
|
filterStatus.flags.takeoff = expectGndEffectTakeoff; // The EKF has been told to expect takeoff and is in a ground effect mitigation mode |
|
filterStatus.flags.touchdown = expectGndEffectTouchdown; // The EKF has been told to detect touchdown and is in a ground effect mitigation mode |
|
filterStatus.flags.using_gps = ((imuSampleTime_ms - lastPosPassTime_ms) < 4000) && (PV_AidingMode == AID_ABSOLUTE); |
|
filterStatus.flags.gps_glitching = !gpsAccuracyGood && (PV_AidingMode == AID_ABSOLUTE) && (frontend->_fusionModeGPS != 3); // GPS glitching is affecting navigation accuracy |
|
filterStatus.flags.gps_quality_good = gpsGoodToAlign; |
|
} |
|
|
|
|