You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
14 KiB
493 lines
14 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* APM_MS5611.cpp - Arduino Library for MS5611-01BA01 absolute pressure sensor |
|
* Code by Jose Julio, Pat Hickey and Jordi Muñoz. DIYDrones.com |
|
* |
|
* Sensor is conected to standard SPI port |
|
* Chip Select pin: Analog2 (provisional until Jordi defines the pin)!! |
|
* |
|
* Variables: |
|
* Temp : Calculated temperature (in Celsius degrees) |
|
* Press : Calculated pressure (in mbar units * 100) |
|
* |
|
* |
|
* Methods: |
|
* init() : Initialization and sensor reset |
|
* read() : Read sensor data and _calculate Temperature, Pressure |
|
* This function is optimized so the main host don´t need to wait |
|
* You can call this function in your main loop |
|
* Maximum data output frequency 100Hz - this allows maximum oversampling in the chip ADC |
|
* It returns a 1 if there are new data. |
|
* get_pressure() : return pressure in mbar*100 units |
|
* get_temperature() : return temperature in celsius degrees*100 units |
|
* |
|
* Internal functions: |
|
* _calculate() : Calculate Temperature and Pressure (temperature compensated) in real units |
|
* |
|
* |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include "AP_Baro_MS5611.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#define CMD_MS5611_RESET 0x1E |
|
#define CMD_MS5611_PROM_Setup 0xA0 |
|
#define CMD_MS5611_PROM_C1 0xA2 |
|
#define CMD_MS5611_PROM_C2 0xA4 |
|
#define CMD_MS5611_PROM_C3 0xA6 |
|
#define CMD_MS5611_PROM_C4 0xA8 |
|
#define CMD_MS5611_PROM_C5 0xAA |
|
#define CMD_MS5611_PROM_C6 0xAC |
|
#define CMD_MS5611_PROM_CRC 0xAE |
|
#define CMD_CONVERT_D1_OSR4096 0x48 // Maximum resolution (oversampling) |
|
#define CMD_CONVERT_D2_OSR4096 0x58 // Maximum resolution (oversampling) |
|
|
|
uint32_t volatile AP_Baro_MS5611::_s_D1; |
|
uint32_t volatile AP_Baro_MS5611::_s_D2; |
|
uint8_t volatile AP_Baro_MS5611::_d1_count; |
|
uint8_t volatile AP_Baro_MS5611::_d2_count; |
|
uint8_t AP_Baro_MS5611::_state; |
|
uint32_t AP_Baro_MS5611::_timer; |
|
bool volatile AP_Baro_MS5611::_updated; |
|
|
|
AP_Baro_MS5611_Serial* AP_Baro_MS5611::_serial = NULL; |
|
AP_Baro_MS5611_SPI AP_Baro_MS5611::spi; |
|
#if MS5611_WITH_I2C |
|
AP_Baro_MS5611_I2C AP_Baro_MS5611::i2c; |
|
#endif |
|
|
|
// SPI Device ////////////////////////////////////////////////////////////////// |
|
|
|
void AP_Baro_MS5611_SPI::init() |
|
{ |
|
_spi = hal.spi->device(AP_HAL::SPIDevice_MS5611); |
|
if (_spi == NULL) { |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " |
|
"valid SPI device driver!")); |
|
return; /* never reached */ |
|
} |
|
_spi_sem = _spi->get_semaphore(); |
|
if (_spi_sem == NULL) { |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " |
|
"valid SPI semaphroe!")); |
|
return; /* never reached */ |
|
|
|
} |
|
|
|
// now that we have initialised, we set the SPI bus speed to high |
|
// (8MHz on APM2) |
|
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); |
|
} |
|
|
|
uint16_t AP_Baro_MS5611_SPI::read_16bits(uint8_t reg) |
|
{ |
|
uint8_t tx[3]; |
|
uint8_t rx[3]; |
|
tx[0] = reg; tx[1] = 0; tx[2] = 0; |
|
_spi->transaction(tx, rx, 3); |
|
return ((uint16_t) rx[1] << 8 ) | ( rx[2] ); |
|
} |
|
|
|
uint32_t AP_Baro_MS5611_SPI::read_adc() |
|
{ |
|
uint8_t tx[4]; |
|
uint8_t rx[4]; |
|
memset(tx, 0, 4); /* first byte is addr = 0 */ |
|
_spi->transaction(tx, rx, 4); |
|
return (((uint32_t)rx[1])<<16) | (((uint32_t)rx[2])<<8) | ((uint32_t)rx[3]); |
|
} |
|
|
|
|
|
void AP_Baro_MS5611_SPI::write(uint8_t reg) |
|
{ |
|
uint8_t tx[1]; |
|
tx[0] = reg; |
|
_spi->transaction(tx, NULL, 1); |
|
} |
|
|
|
bool AP_Baro_MS5611_SPI::sem_take_blocking() { |
|
return _spi_sem->take(10); |
|
} |
|
|
|
bool AP_Baro_MS5611_SPI::sem_take_nonblocking() |
|
{ |
|
/** |
|
* Take nonblocking from a TimerProcess context & |
|
* monitor for bad failures |
|
*/ |
|
static int semfail_ctr = 0; |
|
bool got = _spi_sem->take_nonblocking(); |
|
if (!got) { |
|
if (!hal.scheduler->system_initializing()) { |
|
semfail_ctr++; |
|
if (semfail_ctr > 100) { |
|
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem " |
|
"100 times in a row, in " |
|
"AP_Baro_MS5611::_update")); |
|
} |
|
} |
|
return false; /* never reached */ |
|
} else { |
|
semfail_ctr = 0; |
|
} |
|
return got; |
|
} |
|
|
|
void AP_Baro_MS5611_SPI::sem_give() |
|
{ |
|
_spi_sem->give(); |
|
} |
|
|
|
// I2C Device ////////////////////////////////////////////////////////////////// |
|
#if MS5611_WITH_I2C |
|
|
|
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO |
|
#define MS5611_ADDR 0x77 |
|
#else |
|
#define MS5611_ADDR 0x76 /** I2C address of the MS5611 on the PX4 board. */ |
|
#endif |
|
|
|
void AP_Baro_MS5611_I2C::init() |
|
{ |
|
_i2c_sem = hal.i2c->get_semaphore(); |
|
if (_i2c_sem == NULL) { |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 did not get " |
|
"valid I2C semaphroe!")); |
|
return; /* never reached */ |
|
} |
|
} |
|
|
|
uint16_t AP_Baro_MS5611_I2C::read_16bits(uint8_t reg) |
|
{ |
|
uint8_t buf[2]; |
|
|
|
if (hal.i2c->readRegisters(MS5611_ADDR, reg, sizeof(buf), buf) == 0) |
|
return (((uint16_t)(buf[0]) << 8) | buf[1]); |
|
|
|
return 0; |
|
} |
|
|
|
uint32_t AP_Baro_MS5611_I2C::read_adc() |
|
{ |
|
uint8_t buf[3]; |
|
|
|
if (hal.i2c->readRegisters(MS5611_ADDR, 0x00, sizeof(buf), buf) == 0) |
|
return (((uint32_t)buf[0]) << 16) | (((uint32_t)buf[1]) << 8) | buf[2]; |
|
|
|
return 0; |
|
} |
|
|
|
void AP_Baro_MS5611_I2C::write(uint8_t reg) |
|
{ |
|
hal.i2c->write(MS5611_ADDR, 1, ®); |
|
} |
|
|
|
bool AP_Baro_MS5611_I2C::sem_take_blocking() { |
|
return _i2c_sem->take(10); |
|
} |
|
|
|
bool AP_Baro_MS5611_I2C::sem_take_nonblocking() |
|
{ |
|
/** |
|
* Take nonblocking from a TimerProcess context & |
|
* monitor for bad failures |
|
*/ |
|
static int semfail_ctr = 0; |
|
bool got = _i2c_sem->take_nonblocking(); |
|
if (!got) { |
|
if (!hal.scheduler->system_initializing()) { |
|
semfail_ctr++; |
|
if (semfail_ctr > 100) { |
|
hal.scheduler->panic(PSTR("PANIC: failed to take _i2c_sem " |
|
"100 times in a row, in " |
|
"AP_Baro_MS5611::_update")); |
|
} |
|
} |
|
return false; /* never reached */ |
|
} else { |
|
semfail_ctr = 0; |
|
} |
|
return got; |
|
} |
|
|
|
void AP_Baro_MS5611_I2C::sem_give() |
|
{ |
|
_i2c_sem->give(); |
|
} |
|
#endif // MS5611_WITH_I2C |
|
|
|
// Public Methods ////////////////////////////////////////////////////////////// |
|
|
|
#if CONFIG_HAL_BOARD != HAL_BOARD_APM2 |
|
/** |
|
* MS5611 crc4 method based on PX4Firmware code |
|
*/ |
|
bool AP_Baro_MS5611::check_crc(void) |
|
{ |
|
int16_t cnt; |
|
uint16_t n_rem; |
|
uint16_t crc_read; |
|
uint8_t n_bit; |
|
uint16_t n_prom[8] = { _serial->read_16bits(CMD_MS5611_PROM_Setup), |
|
C1, C2, C3, C4, C5, C6, |
|
_serial->read_16bits(CMD_MS5611_PROM_CRC) }; |
|
n_rem = 0x00; |
|
|
|
/* save the read crc */ |
|
crc_read = n_prom[7]; |
|
|
|
/* remove CRC byte */ |
|
n_prom[7] = (0xFF00 & (n_prom[7])); |
|
|
|
for (cnt = 0; cnt < 16; cnt++) { |
|
/* uneven bytes */ |
|
if (cnt & 1) { |
|
n_rem ^= (uint8_t)((n_prom[cnt >> 1]) & 0x00FF); |
|
|
|
} else { |
|
n_rem ^= (uint8_t)(n_prom[cnt >> 1] >> 8); |
|
} |
|
|
|
for (n_bit = 8; n_bit > 0; n_bit--) { |
|
if (n_rem & 0x8000) { |
|
n_rem = (n_rem << 1) ^ 0x3000; |
|
|
|
} else { |
|
n_rem = (n_rem << 1); |
|
} |
|
} |
|
} |
|
|
|
/* final 4 bit remainder is CRC value */ |
|
n_rem = (0x000F & (n_rem >> 12)); |
|
n_prom[7] = crc_read; |
|
|
|
/* return true if CRCs match */ |
|
return (0x000F & crc_read) == (n_rem ^ 0x00); |
|
} |
|
#endif |
|
|
|
// SPI should be initialized externally |
|
bool AP_Baro_MS5611::init() |
|
{ |
|
if (_serial == NULL) { |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: NULL serial driver")); |
|
return false; /* never reached */ |
|
} |
|
|
|
_serial->init(); |
|
if (!_serial->sem_take_blocking()){ |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611: failed to take " |
|
"serial semaphore for init")); |
|
return false; /* never reached */ |
|
} |
|
|
|
_serial->write(CMD_MS5611_RESET); |
|
hal.scheduler->delay(4); |
|
|
|
// We read the factory calibration |
|
// The on-chip CRC is not used |
|
C1 = _serial->read_16bits(CMD_MS5611_PROM_C1); |
|
C2 = _serial->read_16bits(CMD_MS5611_PROM_C2); |
|
C3 = _serial->read_16bits(CMD_MS5611_PROM_C3); |
|
C4 = _serial->read_16bits(CMD_MS5611_PROM_C4); |
|
C5 = _serial->read_16bits(CMD_MS5611_PROM_C5); |
|
C6 = _serial->read_16bits(CMD_MS5611_PROM_C6); |
|
|
|
// if not on APM2 then check CRC |
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 |
|
if (!check_crc()) { |
|
hal.scheduler->panic("Bad CRC on MS5611"); |
|
} |
|
#endif |
|
|
|
//Send a command to read Temp first |
|
_serial->write(CMD_CONVERT_D2_OSR4096); |
|
_timer = hal.scheduler->micros(); |
|
_state = 0; |
|
Temp=0; |
|
Press=0; |
|
|
|
_s_D1 = 0; |
|
_s_D2 = 0; |
|
_d1_count = 0; |
|
_d2_count = 0; |
|
|
|
hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Baro_MS5611::_update)); |
|
_serial->sem_give(); |
|
|
|
// wait for at least one value to be read |
|
uint32_t tstart = hal.scheduler->millis(); |
|
while (!_updated) { |
|
hal.scheduler->delay(10); |
|
if (hal.scheduler->millis() - tstart > 1000) { |
|
hal.scheduler->panic(PSTR("PANIC: AP_Baro_MS5611 took more than " |
|
"1000ms to initialize")); |
|
_flags.healthy = false; |
|
return false; |
|
} |
|
} |
|
|
|
_flags.healthy = true; |
|
return true; |
|
} |
|
|
|
|
|
// Read the sensor. This is a state machine |
|
// We read one time Temperature (state=1) and then 4 times Pressure (states 2-5) |
|
// temperature does not change so quickly... |
|
void AP_Baro_MS5611::_update(void) |
|
{ |
|
// Throttle read rate to 100hz maximum. |
|
if (hal.scheduler->micros() - _timer < 10000) { |
|
return; |
|
} |
|
|
|
if (!_serial->sem_take_nonblocking()) { |
|
return; |
|
} |
|
|
|
if (_state == 0) { |
|
// On state 0 we read temp |
|
uint32_t d2 = _serial->read_adc(); |
|
if (d2 != 0) { |
|
_s_D2 += d2; |
|
_d2_count++; |
|
if (_d2_count == 32) { |
|
// we have summed 32 values. This only happens |
|
// when we stop reading the barometer for a long time |
|
// (more than 1.2 seconds) |
|
_s_D2 >>= 1; |
|
_d2_count = 16; |
|
} |
|
} |
|
_state++; |
|
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure |
|
} else { |
|
uint32_t d1 = _serial->read_adc();; |
|
if (d1 != 0) { |
|
// occasional zero values have been seen on the PXF |
|
// board. These may be SPI errors, but safest to ignore |
|
_s_D1 += d1; |
|
_d1_count++; |
|
if (_d1_count == 128) { |
|
// we have summed 128 values. This only happens |
|
// when we stop reading the barometer for a long time |
|
// (more than 1.2 seconds) |
|
_s_D1 >>= 1; |
|
_d1_count = 64; |
|
} |
|
// Now a new reading exists |
|
_updated = true; |
|
} |
|
_state++; |
|
if (_state == 5) { |
|
_serial->write(CMD_CONVERT_D2_OSR4096); // Command to read temperature |
|
_state = 0; |
|
} else { |
|
_serial->write(CMD_CONVERT_D1_OSR4096); // Command to read pressure |
|
} |
|
} |
|
|
|
_timer = hal.scheduler->micros(); |
|
_serial->sem_give(); |
|
} |
|
|
|
uint8_t AP_Baro_MS5611::read() |
|
{ |
|
bool updated = _updated; |
|
if (updated) { |
|
uint32_t sD1, sD2; |
|
uint8_t d1count, d2count; |
|
|
|
// Suspend timer procs because these variables are written to |
|
// in "_update". |
|
hal.scheduler->suspend_timer_procs(); |
|
sD1 = _s_D1; _s_D1 = 0; |
|
sD2 = _s_D2; _s_D2 = 0; |
|
d1count = _d1_count; _d1_count = 0; |
|
d2count = _d2_count; _d2_count = 0; |
|
_updated = false; |
|
hal.scheduler->resume_timer_procs(); |
|
|
|
if (d1count != 0) { |
|
D1 = ((float)sD1) / d1count; |
|
} |
|
if (d2count != 0) { |
|
D2 = ((float)sD2) / d2count; |
|
} |
|
_pressure_samples = d1count; |
|
_raw_press = D1; |
|
_raw_temp = D2; |
|
} |
|
_calculate(); |
|
if (updated) { |
|
_last_update = hal.scheduler->millis(); |
|
} |
|
return updated ? 1 : 0; |
|
} |
|
|
|
// Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). |
|
void AP_Baro_MS5611::_calculate() |
|
{ |
|
float dT; |
|
float TEMP; |
|
float OFF; |
|
float SENS; |
|
float P; |
|
|
|
// Formulas from manufacturer datasheet |
|
// sub -20c temperature compensation is not included |
|
|
|
// we do the calculations using floating point |
|
// as this is much faster on an AVR2560, and also allows |
|
// us to take advantage of the averaging of D1 and D1 over |
|
// multiple samples, giving us more precision |
|
dT = D2-(((uint32_t)C5)<<8); |
|
TEMP = (dT * C6)/8388608; |
|
OFF = C2 * 65536.0f + (C4 * dT) / 128; |
|
SENS = C1 * 32768.0f + (C3 * dT) / 256; |
|
|
|
if (TEMP < 0) { |
|
// second order temperature compensation when under 20 degrees C |
|
float T2 = (dT*dT) / 0x80000000; |
|
float Aux = TEMP*TEMP; |
|
float OFF2 = 2.5f*Aux; |
|
float SENS2 = 1.25f*Aux; |
|
TEMP = TEMP - T2; |
|
OFF = OFF - OFF2; |
|
SENS = SENS - SENS2; |
|
} |
|
|
|
P = (D1*SENS/2097152 - OFF)/32768; |
|
Temp = (TEMP + 2000) * 0.01f; |
|
Press = P; |
|
} |
|
|
|
float AP_Baro_MS5611::get_pressure() |
|
{ |
|
return Press; |
|
} |
|
|
|
float AP_Baro_MS5611::get_temperature() const |
|
{ |
|
// temperature in degrees C units |
|
return Temp; |
|
}
|
|
|