You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
620 lines
18 KiB
620 lines
18 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
* The init_ardupilot function processes everything we need for an in - air restart |
|
* We will determine later if we are actually on the ground and process a |
|
* ground start in that case. |
|
* |
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Commands:\n" |
|
" logs log readback/setup mode\n" |
|
" setup setup mode\n" |
|
" test test mode\n" |
|
" reboot reboot to flight mode\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
static const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"reboot", reboot_board}, |
|
{"help", main_menu_help}, |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.scheduler->reboot(false); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
// disable the failsafe code in the CLI |
|
hal.scheduler->register_timer_failsafe(NULL,1); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(NULL, 5); |
|
|
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the MAVLink protocol efficiently |
|
// |
|
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE); |
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " FIRMWARE_STRING |
|
"\n\nFree RAM: %u\n"), |
|
hal.util->available_memory()); |
|
|
|
|
|
// |
|
// Check the EEPROM format version before loading any parameters from EEPROM |
|
// |
|
load_parameters(); |
|
|
|
BoardConfig.init(); |
|
|
|
// allow servo set on all channels except first 4 |
|
ServoRelayEvents.set_channel_mask(0xFFF0); |
|
|
|
set_control_channels(); |
|
|
|
// reset the uartA baud rate after parameter load |
|
hal.uartA->begin(map_baudrate(g.serial0_baud)); |
|
|
|
// keep a record of how many resets have happened. This can be |
|
// used to detect in-flight resets |
|
g.num_resets.set_and_save(g.num_resets+1); |
|
|
|
// init baro before we start the GCS, so that the CLI baro test works |
|
barometer.init(); |
|
|
|
// initialise sonar |
|
init_sonar(); |
|
|
|
// init the GCS |
|
gcs[0].init(hal.uartA); |
|
|
|
// we start by assuming USB connected, as we initialed the serial |
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. |
|
usb_connected = true; |
|
check_usb_mux(); |
|
|
|
// we have a 2nd serial port for telemetry |
|
gcs[1].setup_uart(hal.uartC, map_baudrate(g.serial1_baud), 128, SERIAL1_BUFSIZE); |
|
|
|
#if MAVLINK_COMM_NUM_BUFFERS > 2 |
|
gcs[2].setup_uart(hal.uartD, map_baudrate(g.serial2_baud), 128, SERIAL2_BUFSIZE); |
|
#endif |
|
|
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0])); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
for (uint8_t i=0; i<num_gcs; i++) { |
|
gcs[i].reset_cli_timeout(); |
|
} |
|
} |
|
#endif |
|
|
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); |
|
|
|
#if CONFIG_INS_TYPE == CONFIG_INS_OILPAN || CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
apm1_adc.Init(); // APM ADC library initialization |
|
#endif |
|
|
|
// initialise airspeed sensor |
|
airspeed.init(); |
|
|
|
if (g.compass_enabled==true) { |
|
if (!compass.init() || !compass.read()) { |
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
g.compass_enabled = false; |
|
} else { |
|
ahrs.set_compass(&compass); |
|
} |
|
} |
|
|
|
// give AHRS the airspeed sensor |
|
ahrs.set_airspeed(&airspeed); |
|
|
|
// GPS Initialization |
|
gps.init(&DataFlash); |
|
|
|
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav |
|
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id |
|
mavlink_system.type = MAV_TYPE_FIXED_WING; |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
relay.init(); |
|
|
|
#if FENCE_TRIGGERED_PIN > 0 |
|
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); |
|
hal.gpio->write(FENCE_TRIGGERED_PIN, 0); |
|
#endif |
|
|
|
/* |
|
* setup the 'main loop is dead' check. Note that this relies on |
|
* the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000); |
|
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); |
|
cliSerial->println_P(msg); |
|
if (gcs[1].initialised) { |
|
hal.uartC->println_P(msg); |
|
} |
|
if (num_gcs > 2 && gcs[2].initialised) { |
|
hal.uartD->println_P(msg); |
|
} |
|
|
|
startup_ground(); |
|
if (should_log(MASK_LOG_CMD)) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
|
|
// choose the nav controller |
|
set_nav_controller(); |
|
|
|
set_mode(MANUAL); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
} |
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
static void startup_ground(void) |
|
{ |
|
set_mode(INITIALISING); |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START")); |
|
|
|
#if (GROUND_START_DELAY > 0) |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay")); |
|
delay(GROUND_START_DELAY * 1000); |
|
#endif |
|
|
|
// Makes the servos wiggle |
|
// step 1 = 1 wiggle |
|
// ----------------------- |
|
if (!g.skip_gyro_cal) { |
|
demo_servos(1); |
|
} |
|
|
|
//INS ground start |
|
//------------------------ |
|
// |
|
startup_INS_ground(false); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); // This was commented out as a HACK. Why? I don't find a problem. |
|
|
|
// Save the settings for in-air restart |
|
// ------------------------------------ |
|
//save_EEPROM_groundstart(); |
|
|
|
// initialise mission library |
|
mission.init(); |
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly |
|
// ----------------------- |
|
if (!g.skip_gyro_cal) { |
|
demo_servos(3); |
|
} |
|
|
|
// reset last heartbeat time, so we don't trigger failsafe on slow |
|
// startup |
|
failsafe.last_heartbeat_ms = millis(); |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// mid-flight, so set the serial ports non-blocking once we are |
|
// ready to fly |
|
hal.uartA->set_blocking_writes(false); |
|
hal.uartC->set_blocking_writes(false); |
|
if (hal.uartD != NULL) { |
|
hal.uartD->set_blocking_writes(false); |
|
} |
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY.")); |
|
} |
|
|
|
static enum FlightMode get_previous_mode() { |
|
return previous_mode; |
|
} |
|
|
|
static void set_mode(enum FlightMode mode) |
|
{ |
|
if(control_mode == mode) { |
|
// don't switch modes if we are already in the correct mode. |
|
return; |
|
} |
|
if(g.auto_trim > 0 && control_mode == MANUAL) |
|
trim_control_surfaces(); |
|
|
|
// perform any cleanup required for prev flight mode |
|
exit_mode(control_mode); |
|
|
|
// cancel inverted flight |
|
auto_state.inverted_flight = false; |
|
|
|
// set mode |
|
previous_mode = control_mode; |
|
control_mode = mode; |
|
|
|
if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) { |
|
// restore last gains |
|
autotune_restore(); |
|
} |
|
|
|
switch(control_mode) |
|
{ |
|
case INITIALISING: |
|
auto_throttle_mode = true; |
|
break; |
|
|
|
case MANUAL: |
|
case STABILIZE: |
|
case TRAINING: |
|
case FLY_BY_WIRE_A: |
|
auto_throttle_mode = false; |
|
break; |
|
|
|
case AUTOTUNE: |
|
auto_throttle_mode = false; |
|
autotune_start(); |
|
break; |
|
|
|
case ACRO: |
|
auto_throttle_mode = false; |
|
acro_state.locked_roll = false; |
|
acro_state.locked_pitch = false; |
|
break; |
|
|
|
case CRUISE: |
|
auto_throttle_mode = true; |
|
cruise_state.locked_heading = false; |
|
cruise_state.lock_timer_ms = 0; |
|
target_altitude_cm = current_loc.alt; |
|
break; |
|
|
|
case FLY_BY_WIRE_B: |
|
auto_throttle_mode = true; |
|
target_altitude_cm = current_loc.alt; |
|
break; |
|
|
|
case CIRCLE: |
|
// the altitude to circle at is taken from the current altitude |
|
auto_throttle_mode = true; |
|
next_WP_loc.alt = current_loc.alt; |
|
break; |
|
|
|
case AUTO: |
|
auto_throttle_mode = true; |
|
next_WP_loc = prev_WP_loc = current_loc; |
|
auto_state.highest_airspeed = 0; |
|
auto_state.initial_pitch_cd = ahrs.pitch_sensor; |
|
// start or resume the mission, based on MIS_AUTORESET |
|
mission.start_or_resume(); |
|
break; |
|
|
|
case RTL: |
|
auto_throttle_mode = true; |
|
prev_WP_loc = current_loc; |
|
do_RTL(); |
|
break; |
|
|
|
case LOITER: |
|
auto_throttle_mode = true; |
|
do_loiter_at_location(); |
|
break; |
|
|
|
case GUIDED: |
|
auto_throttle_mode = true; |
|
guided_throttle_passthru = false; |
|
set_guided_WP(); |
|
break; |
|
} |
|
|
|
// start with throttle suppressed in auto_throttle modes |
|
throttle_suppressed = auto_throttle_mode; |
|
|
|
if (should_log(MASK_LOG_MODE)) |
|
Log_Write_Mode(control_mode); |
|
|
|
// reset attitude integrators on mode change |
|
rollController.reset_I(); |
|
pitchController.reset_I(); |
|
yawController.reset_I(); |
|
} |
|
|
|
// exit_mode - perform any cleanup required when leaving a flight mode |
|
static void exit_mode(enum FlightMode mode) |
|
{ |
|
// stop mission when we leave auto |
|
if (mode == AUTO) { |
|
if (mission.state() == AP_Mission::MISSION_RUNNING) { |
|
mission.stop(); |
|
} |
|
} |
|
} |
|
|
|
static void check_long_failsafe() |
|
{ |
|
uint32_t tnow = millis(); |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS) { |
|
if (failsafe.rc_override_active && (tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { |
|
failsafe_long_on_event(FAILSAFE_LONG); |
|
} else if (!failsafe.rc_override_active && |
|
failsafe.state == FAILSAFE_SHORT && |
|
(tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) { |
|
failsafe_long_on_event(FAILSAFE_LONG); |
|
} else if (g.gcs_heartbeat_fs_enabled != GCS_FAILSAFE_OFF && |
|
failsafe.last_heartbeat_ms != 0 && |
|
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) { |
|
failsafe_long_on_event(FAILSAFE_GCS); |
|
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI && |
|
gcs[0].last_radio_status_remrssi_ms != 0 && |
|
(tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) { |
|
failsafe_long_on_event(FAILSAFE_GCS); |
|
} |
|
} else { |
|
// We do not change state but allow for user to change mode |
|
if (failsafe.state == FAILSAFE_GCS && |
|
(tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) { |
|
failsafe.state = FAILSAFE_NONE; |
|
} else if (failsafe.state == FAILSAFE_LONG && |
|
failsafe.rc_override_active && |
|
(tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) { |
|
failsafe.state = FAILSAFE_NONE; |
|
} else if (failsafe.state == FAILSAFE_LONG && |
|
!failsafe.rc_override_active && |
|
!failsafe.ch3_failsafe) { |
|
failsafe.state = FAILSAFE_NONE; |
|
} |
|
} |
|
} |
|
|
|
static void check_short_failsafe() |
|
{ |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe.state == FAILSAFE_NONE) { |
|
if(failsafe.ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde |
|
failsafe_short_on_event(FAILSAFE_SHORT); |
|
} |
|
} |
|
|
|
if(failsafe.state == FAILSAFE_SHORT) { |
|
if(!failsafe.ch3_failsafe) { |
|
failsafe_short_off_event(); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void startup_INS_ground(bool do_accel_init) |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
while (!barometer.healthy) { |
|
// the barometer becomes healthy when we get the first |
|
// HIL_STATE message |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
AP_InertialSensor::Start_style style; |
|
if (g.skip_gyro_cal && !do_accel_init) { |
|
style = AP_InertialSensor::WARM_START; |
|
} else { |
|
style = AP_InertialSensor::COLD_START; |
|
} |
|
|
|
if (style == AP_InertialSensor::COLD_START) { |
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane")); |
|
mavlink_delay(100); |
|
} |
|
|
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING); |
|
ahrs.set_wind_estimation(true); |
|
|
|
ins.init(style, ins_sample_rate); |
|
if (do_accel_init) { |
|
ins.init_accel(); |
|
ahrs.set_trim(Vector3f(0, 0, 0)); |
|
} |
|
ahrs.reset(); |
|
|
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(); |
|
|
|
if (airspeed.enabled()) { |
|
// initialize airspeed sensor |
|
// -------------------------- |
|
zero_airspeed(); |
|
} else { |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed")); |
|
} |
|
} |
|
|
|
// updates the status of the notify objects |
|
// should be called at 50hz |
|
static void update_notify() |
|
{ |
|
notify.update(); |
|
} |
|
|
|
static void resetPerfData(void) { |
|
mainLoop_count = 0; |
|
G_Dt_max = 0; |
|
perf_mon_timer = millis(); |
|
} |
|
|
|
|
|
static void check_usb_mux(void) |
|
{ |
|
bool usb_check = hal.gpio->usb_connected(); |
|
if (usb_check == usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
usb_connected = usb_check; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
// the APM2 has a MUX setup where the first serial port switches |
|
// between USB and a TTL serial connection. When on USB we use |
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it |
|
// at SERIAL1_BAUD. |
|
if (usb_connected) { |
|
hal.uartA->begin(SERIAL0_BAUD); |
|
} else { |
|
hal.uartA->begin(map_baudrate(g.serial1_baud)); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
static void |
|
print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case MANUAL: |
|
port->print_P(PSTR("Manual")); |
|
break; |
|
case CIRCLE: |
|
port->print_P(PSTR("Circle")); |
|
break; |
|
case STABILIZE: |
|
port->print_P(PSTR("Stabilize")); |
|
break; |
|
case TRAINING: |
|
port->print_P(PSTR("Training")); |
|
break; |
|
case ACRO: |
|
port->print_P(PSTR("ACRO")); |
|
break; |
|
case FLY_BY_WIRE_A: |
|
port->print_P(PSTR("FBW_A")); |
|
break; |
|
case AUTOTUNE: |
|
port->print_P(PSTR("AUTOTUNE")); |
|
break; |
|
case FLY_BY_WIRE_B: |
|
port->print_P(PSTR("FBW_B")); |
|
break; |
|
case CRUISE: |
|
port->print_P(PSTR("CRUISE")); |
|
break; |
|
case AUTO: |
|
port->print_P(PSTR("AUTO")); |
|
break; |
|
case RTL: |
|
port->print_P(PSTR("RTL")); |
|
break; |
|
case LOITER: |
|
port->print_P(PSTR("Loiter")); |
|
break; |
|
case GUIDED: |
|
port->print_P(PSTR("Guided")); |
|
break; |
|
default: |
|
port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); |
|
break; |
|
} |
|
} |
|
|
|
static void print_comma(void) |
|
{ |
|
cliSerial->print_P(PSTR(",")); |
|
} |
|
|
|
|
|
/* |
|
write to a servo |
|
*/ |
|
static void servo_write(uint8_t ch, uint16_t pwm) |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
if (!g.hil_servos) { |
|
if (ch < 8) { |
|
RC_Channel::rc_channel(ch)->radio_out = pwm; |
|
} |
|
return; |
|
} |
|
#endif |
|
hal.rcout->enable_ch(ch); |
|
hal.rcout->write(ch, pwm); |
|
} |
|
|
|
/* |
|
should we log a message type now? |
|
*/ |
|
static bool should_log(uint32_t mask) |
|
{ |
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) { |
|
return false; |
|
} |
|
bool ret = ahrs.get_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0; |
|
if (ret && !DataFlash.logging_started() && !in_log_download) { |
|
// we have to set in_mavlink_delay to prevent logging while |
|
// writing headers |
|
in_mavlink_delay = true; |
|
start_logging(); |
|
in_mavlink_delay = false; |
|
} |
|
return ret; |
|
}
|
|
|