You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.2 KiB
170 lines
5.2 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed. |
|
//**************************************************************** |
|
|
|
static void learning() |
|
{ |
|
// Calculate desired servo output for the turn // Wheels Direction |
|
// --------------------------------------------- |
|
|
|
g.channel_roll.servo_out = nav_roll; |
|
g.channel_roll.servo_out = g.channel_roll.servo_out * g.turn_gain; |
|
g.channel_rudder.servo_out = g.channel_roll.servo_out; |
|
} |
|
|
|
|
|
static void crash_checker() |
|
{ |
|
if(ahrs.pitch_sensor < -4500){ |
|
crash_timer = 255; |
|
} |
|
if(crash_timer > 0) |
|
crash_timer--; |
|
} |
|
|
|
static void calc_throttle() |
|
{ int rov_speed; |
|
|
|
int throttle_target = g.throttle_cruise + throttle_nudge + 50; |
|
|
|
target_airspeed = g.airspeed_cruise; |
|
|
|
if(speed_boost) |
|
rov_speed = g.booster * target_airspeed; |
|
else |
|
rov_speed = target_airspeed; |
|
|
|
groundspeed_error = rov_speed - (float)ground_speed; |
|
|
|
int throttle_req = (throttle_target + g.pidTeThrottle.get_pid(groundspeed_error, dTnav)) * 10; |
|
|
|
if(g.throttle_slewrate > 0) |
|
{ if (throttle_req > throttle_last) |
|
throttle = throttle + g.throttle_slewrate; |
|
else if (throttle_req < throttle_last) { |
|
throttle = throttle - g.throttle_slewrate; |
|
} |
|
throttle = constrain(throttle, 500, throttle_req); |
|
throttle_last = throttle; |
|
} else { |
|
throttle = throttle_req; |
|
} |
|
g.channel_throttle.servo_out = constrain(((float)throttle / 10.0f), 0, g.throttle_max.get()); |
|
} |
|
|
|
/***************************************** |
|
* Calculate desired turn angles (in medium freq loop) |
|
*****************************************/ |
|
|
|
static void calc_nav_roll() |
|
{ |
|
|
|
// Adjust gain based on ground speed |
|
nav_gain_scaler = (float)ground_speed / (g.airspeed_cruise * 100.0); |
|
nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4); |
|
|
|
// Calculate the required turn of the wheels rover |
|
// ---------------------------------------- |
|
|
|
// negative error = left turn |
|
// positive error = right turn |
|
|
|
nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100 |
|
|
|
if(obstacle) { // obstacle avoidance |
|
nav_roll += 9000; // if obstacle in front turn 90° right |
|
speed_boost = false; |
|
} |
|
nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get()); |
|
|
|
} |
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. |
|
// Keeps outdated data out of our calculations |
|
static void reset_I(void) |
|
{ |
|
g.pidNavRoll.reset_I(); |
|
g.pidTeThrottle.reset_I(); |
|
// g.pidAltitudeThrottle.reset_I(); |
|
} |
|
|
|
/***************************************** |
|
* Set the flight control servos based on the current calculated values |
|
*****************************************/ |
|
static void set_servos(void) |
|
{ |
|
int flapSpeedSource = 0; |
|
|
|
// vectorize the rc channels |
|
RC_Channel_aux* rc_array[NUM_CHANNELS]; |
|
rc_array[CH_1] = NULL; |
|
rc_array[CH_2] = NULL; |
|
rc_array[CH_3] = NULL; |
|
rc_array[CH_4] = NULL; |
|
rc_array[CH_5] = &g.rc_5; |
|
rc_array[CH_6] = &g.rc_6; |
|
rc_array[CH_7] = &g.rc_7; |
|
rc_array[CH_8] = &g.rc_8; |
|
|
|
if((control_mode == MANUAL) || (control_mode == LEARNING)){ |
|
// do a direct pass through of radio values |
|
g.channel_roll.radio_out = g.channel_roll.radio_in; |
|
|
|
if(obstacle) // obstacle in front, turn right in Stabilize mode |
|
g.channel_roll.radio_out -= 500; |
|
|
|
g.channel_pitch.radio_out = g.channel_pitch.radio_in; |
|
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in; |
|
g.channel_rudder.radio_out = g.channel_roll.radio_in; |
|
} else { |
|
|
|
g.channel_roll.calc_pwm(); |
|
g.channel_pitch.calc_pwm(); |
|
g.channel_rudder.calc_pwm(); |
|
|
|
g.channel_throttle.radio_out = g.channel_throttle.radio_in; |
|
g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); |
|
|
|
} |
|
|
|
if (control_mode >= FLY_BY_WIRE_B) { |
|
// convert 0 to 100% into PWM |
|
g.channel_throttle.calc_pwm(); |
|
} |
|
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS |
|
// send values to the PWM timers for output |
|
// ---------------------------------------- |
|
APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos |
|
APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos |
|
APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos |
|
APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos |
|
// Route configurable aux. functions to their respective servos |
|
|
|
g.rc_5.output_ch(CH_5); |
|
g.rc_6.output_ch(CH_6); |
|
g.rc_7.output_ch(CH_7); |
|
g.rc_8.output_ch(CH_8); |
|
|
|
#endif |
|
} |
|
|
|
static void demo_servos(byte i) { |
|
|
|
while(i > 0){ |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); |
|
#if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS |
|
APM_RC.OutputCh(1, 1400); |
|
mavlink_delay(400); |
|
APM_RC.OutputCh(1, 1600); |
|
mavlink_delay(200); |
|
APM_RC.OutputCh(1, 1500); |
|
#endif |
|
mavlink_delay(400); |
|
i--; |
|
} |
|
}
|
|
|