You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
615 lines
18 KiB
615 lines
18 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// These are function definitions so the Menu can be constructed before the functions |
|
// are defined below. Order matters to the compiler. |
|
static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_radio(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_passthru(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_gps(uint8_t argc, const Menu::arg *argv); |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
static int8_t test_adc(uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
static int8_t test_ins(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_relay(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_wp(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_airspeed(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_pressure(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_mag(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_modeswitch(uint8_t argc, const Menu::arg *argv); |
|
static int8_t test_logging(uint8_t argc, const Menu::arg *argv); |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
static int8_t test_shell(uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
// forward declaration to keep the compiler happy |
|
static void test_wp_print(const AP_Mission::Mission_Command& cmd); |
|
|
|
// Creates a constant array of structs representing menu options |
|
// and stores them in Flash memory, not RAM. |
|
// User enters the string in the console to call the functions on the right. |
|
// See class Menu in AP_Common for implementation details |
|
static const struct Menu::command test_menu_commands[] PROGMEM = { |
|
{"pwm", test_radio_pwm}, |
|
{"radio", test_radio}, |
|
{"passthru", test_passthru}, |
|
{"failsafe", test_failsafe}, |
|
{"relay", test_relay}, |
|
{"waypoints", test_wp}, |
|
{"xbee", test_xbee}, |
|
{"eedump", test_eedump}, |
|
{"modeswitch", test_modeswitch}, |
|
|
|
// Tests below here are for hardware sensors only present |
|
// when real sensors are attached or they are emulated |
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
{"adc", test_adc}, |
|
#endif |
|
{"gps", test_gps}, |
|
{"ins", test_ins}, |
|
{"airspeed", test_airspeed}, |
|
{"airpressure", test_pressure}, |
|
{"compass", test_mag}, |
|
#else |
|
{"gps", test_gps}, |
|
{"ins", test_ins}, |
|
{"compass", test_mag}, |
|
#endif |
|
{"logging", test_logging}, |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
{"shell", test_shell}, |
|
#endif |
|
|
|
}; |
|
|
|
// A Macro to create the Menu |
|
MENU(test_menu, "test", test_menu_commands); |
|
|
|
static int8_t |
|
test_mode(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Test Mode\n\n")); |
|
test_menu.run(); |
|
return 0; |
|
} |
|
|
|
static void print_hit_enter() |
|
{ |
|
cliSerial->printf_P(PSTR("Hit Enter to exit.\n\n")); |
|
} |
|
|
|
static int8_t |
|
test_eedump(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
uint16_t i, j; |
|
|
|
// hexdump the EEPROM |
|
for (i = 0; i < HAL_STORAGE_SIZE_AVAILABLE; i += 16) { |
|
cliSerial->printf_P(PSTR("%04x:"), i); |
|
for (j = 0; j < 16; j++) |
|
cliSerial->printf_P(PSTR(" %02x"), hal.storage->read_byte(i + j)); |
|
cliSerial->println(); |
|
} |
|
return(0); |
|
} |
|
|
|
static int8_t |
|
test_radio_pwm(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1) { |
|
delay(20); |
|
|
|
// Filters radio input - adjust filters in the radio.pde file |
|
// ---------------------------------------------------------- |
|
read_radio(); |
|
|
|
cliSerial->printf_P(PSTR("IN:\t1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
(int)channel_roll->radio_in, |
|
(int)channel_pitch->radio_in, |
|
(int)channel_throttle->radio_in, |
|
(int)channel_rudder->radio_in, |
|
(int)g.rc_5.radio_in, |
|
(int)g.rc_6.radio_in, |
|
(int)g.rc_7.radio_in, |
|
(int)g.rc_8.radio_in); |
|
|
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
test_passthru(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1) { |
|
delay(20); |
|
|
|
// New radio frame? (we could use also if((millis()- timer) > 20) |
|
if (hal.rcin->new_input()) { |
|
cliSerial->print_P(PSTR("CH:")); |
|
for(int16_t i = 0; i < 8; i++) { |
|
cliSerial->print(hal.rcin->read(i)); // Print channel values |
|
print_comma(); |
|
servo_write(i, hal.rcin->read(i)); // Copy input to Servos |
|
} |
|
cliSerial->println(); |
|
} |
|
if (cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int8_t |
|
test_radio(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
|
|
channel_roll->calc_pwm(); |
|
channel_pitch->calc_pwm(); |
|
channel_throttle->calc_pwm(); |
|
channel_rudder->calc_pwm(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos(); |
|
|
|
cliSerial->printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), |
|
(int)channel_roll->control_in, |
|
(int)channel_pitch->control_in, |
|
(int)channel_throttle->control_in, |
|
(int)channel_rudder->control_in, |
|
(int)g.rc_5.control_in, |
|
(int)g.rc_6.control_in, |
|
(int)g.rc_7.control_in, |
|
(int)g.rc_8.control_in); |
|
|
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_failsafe(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
uint8_t fail_test; |
|
print_hit_enter(); |
|
for(int16_t i = 0; i < 50; i++) { |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
oldSwitchPosition = readSwitch(); |
|
|
|
cliSerial->printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); |
|
while(channel_throttle->control_in > 0) { |
|
delay(20); |
|
read_radio(); |
|
} |
|
|
|
while(1) { |
|
delay(20); |
|
read_radio(); |
|
|
|
if(channel_throttle->control_in > 0) { |
|
cliSerial->printf_P(PSTR("THROTTLE CHANGED %d \n"), (int)channel_throttle->control_in); |
|
fail_test++; |
|
} |
|
|
|
if(oldSwitchPosition != readSwitch()) { |
|
cliSerial->printf_P(PSTR("CONTROL MODE CHANGED: ")); |
|
print_flight_mode(cliSerial, readSwitch()); |
|
cliSerial->println(); |
|
fail_test++; |
|
} |
|
|
|
if(g.throttle_fs_enabled && channel_throttle->get_failsafe()) { |
|
cliSerial->printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), (int)channel_throttle->radio_in); |
|
print_flight_mode(cliSerial, readSwitch()); |
|
cliSerial->println(); |
|
fail_test++; |
|
} |
|
|
|
if(fail_test > 0) { |
|
return (0); |
|
} |
|
if(cliSerial->available() > 0) { |
|
cliSerial->printf_P(PSTR("LOS caused no change in APM.\n")); |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_relay(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
while(1) { |
|
cliSerial->printf_P(PSTR("Relay on\n")); |
|
relay.on(0); |
|
delay(3000); |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
|
|
cliSerial->printf_P(PSTR("Relay off\n")); |
|
relay.off(0); |
|
delay(3000); |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_wp(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
delay(1000); |
|
|
|
// save the alitude above home option |
|
if (g.RTL_altitude_cm < 0) { |
|
cliSerial->printf_P(PSTR("Hold current altitude\n")); |
|
}else{ |
|
cliSerial->printf_P(PSTR("Hold altitude of %dm\n"), (int)g.RTL_altitude_cm/100); |
|
} |
|
|
|
cliSerial->printf_P(PSTR("%d waypoints\n"), (int)mission.num_commands()); |
|
cliSerial->printf_P(PSTR("Hit radius: %d\n"), (int)g.waypoint_radius); |
|
cliSerial->printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); |
|
|
|
for(uint8_t i = 0; i <= mission.num_commands(); i++) { |
|
AP_Mission::Mission_Command temp_cmd; |
|
if (mission.read_cmd_from_storage(i,temp_cmd)) { |
|
test_wp_print(temp_cmd); |
|
} |
|
} |
|
|
|
return (0); |
|
} |
|
|
|
static void |
|
test_wp_print(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
cliSerial->printf_P(PSTR("command #: %d id:%d options:%d p1:%d p2:%ld p3:%ld p4:%ld \n"), |
|
(int)cmd.index, |
|
(int)cmd.id, |
|
(int)cmd.content.location.options, |
|
(int)cmd.p1, |
|
(long)cmd.content.location.alt, |
|
(long)cmd.content.location.lat, |
|
(long)cmd.content.location.lng); |
|
} |
|
|
|
static int8_t |
|
test_xbee(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); |
|
|
|
while(1) { |
|
|
|
if (hal.uartC->available()) |
|
hal.uartC->write(hal.uartC->read()); |
|
|
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
test_modeswitch(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
cliSerial->printf_P(PSTR("Control CH ")); |
|
|
|
cliSerial->println(FLIGHT_MODE_CHANNEL, BASE_DEC); |
|
|
|
while(1) { |
|
delay(20); |
|
uint8_t switchPosition = readSwitch(); |
|
if (oldSwitchPosition != switchPosition) { |
|
cliSerial->printf_P(PSTR("Position %d\n"), (int)switchPosition); |
|
oldSwitchPosition = switchPosition; |
|
} |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* test the dataflash is working |
|
*/ |
|
static int8_t |
|
test_logging(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
DataFlash.ShowDeviceInfo(cliSerial); |
|
return 0; |
|
} |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
/* |
|
* run a debug shell |
|
*/ |
|
static int8_t |
|
test_shell(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.util->run_debug_shell(cliSerial); |
|
return 0; |
|
} |
|
#endif |
|
|
|
//------------------------------------------------------------------------------------------- |
|
// tests in this section are for real sensors or sensors that have been simulated |
|
|
|
#if CONFIG_INS_TYPE == CONFIG_INS_OILPAN || CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
static int8_t |
|
test_adc(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
apm1_adc.Init(); |
|
delay(1000); |
|
cliSerial->printf_P(PSTR("ADC\n")); |
|
delay(1000); |
|
|
|
while(1) { |
|
for (int8_t i=0; i<9; i++) cliSerial->printf_P(PSTR("%.1f\t"),apm1_adc.Ch(i)); |
|
cliSerial->println(); |
|
delay(100); |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
#endif // CONFIG_INS_TYPE |
|
|
|
static int8_t |
|
test_gps(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
uint32_t last_message_time_ms = 0; |
|
while(1) { |
|
delay(100); |
|
|
|
gps.update(); |
|
|
|
if (gps.last_message_time_ms() != last_message_time_ms) { |
|
last_message_time_ms = gps.last_message_time_ms(); |
|
const Location &loc = gps.location(); |
|
cliSerial->printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), |
|
(long)loc.lat, |
|
(long)loc.lng, |
|
(long)loc.alt/100, |
|
(int)gps.num_sats()); |
|
} else { |
|
cliSerial->printf_P(PSTR(".")); |
|
} |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
static int8_t |
|
test_ins(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
//cliSerial->printf_P(PSTR("Calibrating.")); |
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ahrs.set_wind_estimation(true); |
|
|
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate); |
|
ahrs.reset(); |
|
|
|
print_hit_enter(); |
|
delay(1000); |
|
|
|
uint8_t counter = 0; |
|
|
|
while(1) { |
|
delay(20); |
|
if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) { |
|
fast_loopTimer_us = hal.scheduler->micros(); |
|
|
|
// INS |
|
// --- |
|
ahrs.update(); |
|
|
|
if(g.compass_enabled) { |
|
counter++; |
|
if(counter == 5) { |
|
compass.read(); |
|
counter = 0; |
|
} |
|
} |
|
|
|
// We are using the INS |
|
// --------------------- |
|
Vector3f gyros = ins.get_gyro(); |
|
Vector3f accels = ins.get_accel(); |
|
cliSerial->printf_P(PSTR("r:%4d p:%4d y:%3d g=(%5.1f %5.1f %5.1f) a=(%5.1f %5.1f %5.1f)\n"), |
|
(int)ahrs.roll_sensor / 100, |
|
(int)ahrs.pitch_sensor / 100, |
|
(uint16_t)ahrs.yaw_sensor / 100, |
|
gyros.x, gyros.y, gyros.z, |
|
accels.x, accels.y, accels.z); |
|
} |
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
test_mag(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!g.compass_enabled) { |
|
cliSerial->printf_P(PSTR("Compass: ")); |
|
print_enabled(false); |
|
return (0); |
|
} |
|
|
|
if (!compass.init()) { |
|
cliSerial->println_P(PSTR("Compass initialisation failed!")); |
|
return 0; |
|
} |
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ahrs.set_wind_estimation(true); |
|
ahrs.set_compass(&compass); |
|
report_compass(); |
|
|
|
// we need the AHRS initialised for this test |
|
ins.init(AP_InertialSensor::COLD_START, |
|
ins_sample_rate); |
|
ahrs.reset(); |
|
|
|
uint16_t counter = 0; |
|
float heading = 0; |
|
|
|
print_hit_enter(); |
|
|
|
while(1) { |
|
delay(20); |
|
if (hal.scheduler->micros() - fast_loopTimer_us > 19000UL) { |
|
fast_loopTimer_us = hal.scheduler->micros(); |
|
|
|
// INS |
|
// --- |
|
ahrs.update(); |
|
|
|
if(counter % 5 == 0) { |
|
if (compass.read()) { |
|
// Calculate heading |
|
const Matrix3f &m = ahrs.get_dcm_matrix(); |
|
heading = compass.calculate_heading(m); |
|
compass.learn_offsets(); |
|
} |
|
} |
|
|
|
counter++; |
|
if (counter>20) { |
|
if (compass.healthy()) { |
|
const Vector3f &mag_ofs = compass.get_offsets(); |
|
const Vector3f &mag = compass.get_field(); |
|
cliSerial->printf_P(PSTR("Heading: %ld, XYZ: %.0f, %.0f, %.0f,\tXYZoff: %6.2f, %6.2f, %6.2f\n"), |
|
(wrap_360_cd(ToDeg(heading) * 100)) /100, |
|
mag.x, mag.y, mag.z, |
|
mag_ofs.x, mag_ofs.y, mag_ofs.z); |
|
} else { |
|
cliSerial->println_P(PSTR("compass not healthy")); |
|
} |
|
counter=0; |
|
} |
|
} |
|
if (cliSerial->available() > 0) { |
|
break; |
|
} |
|
} |
|
|
|
// save offsets. This allows you to get sane offset values using |
|
// the CLI before you go flying. |
|
cliSerial->println_P(PSTR("saving offsets")); |
|
compass.save_offsets(); |
|
return (0); |
|
} |
|
|
|
//------------------------------------------------------------------------------------------- |
|
// real sensors that have not been simulated yet go here |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
|
|
static int8_t |
|
test_airspeed(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
if (!airspeed.enabled()) { |
|
cliSerial->printf_P(PSTR("airspeed: ")); |
|
print_enabled(false); |
|
return (0); |
|
}else{ |
|
print_hit_enter(); |
|
zero_airspeed(); |
|
cliSerial->printf_P(PSTR("airspeed: ")); |
|
print_enabled(true); |
|
|
|
while(1) { |
|
delay(20); |
|
read_airspeed(); |
|
cliSerial->printf_P(PSTR("%.1f m/s\n"), airspeed.get_airspeed()); |
|
|
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static int8_t |
|
test_pressure(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf_P(PSTR("Uncalibrated relative airpressure\n")); |
|
print_hit_enter(); |
|
|
|
init_barometer(); |
|
|
|
while(1) { |
|
delay(100); |
|
|
|
if (!barometer.healthy) { |
|
cliSerial->println_P(PSTR("not healthy")); |
|
} else { |
|
cliSerial->printf_P(PSTR("Alt: %0.2fm, Raw: %f Temperature: %.1f\n"), |
|
barometer.get_altitude(), |
|
barometer.get_pressure(), |
|
barometer.get_temperature()); |
|
} |
|
|
|
if(cliSerial->available() > 0) { |
|
return (0); |
|
} |
|
} |
|
} |
|
|
|
#endif // HIL_MODE == HIL_MODE_DISABLED |
|
|
|
#endif // CLI_ENABLED
|
|
|