You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1064 lines
36 KiB
1064 lines
36 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "Plane.h" |
|
|
|
/********************************************************************************/ |
|
// Command Event Handlers |
|
/********************************************************************************/ |
|
bool Plane::start_command(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// log when new commands start |
|
if (should_log(MASK_LOG_CMD)) { |
|
DataFlash.Log_Write_Mission_Cmd(mission, cmd); |
|
} |
|
|
|
// special handling for nav vs non-nav commands |
|
if (AP_Mission::is_nav_cmd(cmd)) { |
|
// set land_complete to false to stop us zeroing the throttle |
|
auto_state.land_complete = false; |
|
auto_state.land_pre_flare = false; |
|
auto_state.sink_rate = 0; |
|
|
|
// set takeoff_complete to true so we don't add extra elevator |
|
// except in a takeoff |
|
auto_state.takeoff_complete = true; |
|
|
|
// if a go around had been commanded, clear it now. |
|
auto_state.commanded_go_around = false; |
|
|
|
// start non-idle |
|
auto_state.idle_mode = false; |
|
|
|
// once landed, post some landing statistics to the GCS |
|
auto_state.post_landing_stats = false; |
|
|
|
// reset loiter start time. New command is a new loiter |
|
loiter.start_time_ms = 0; |
|
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Executing nav command ID #%i",cmd.id); |
|
} else { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Executing command ID #%i",cmd.id); |
|
} |
|
|
|
switch(cmd.id) { |
|
|
|
case MAV_CMD_NAV_TAKEOFF: |
|
crash_state.is_crashed = false; |
|
do_takeoff(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint |
|
do_nav_wp(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LAND: // LAND to Waypoint |
|
do_land(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely |
|
do_loiter_unlimited(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times |
|
do_loiter_turns(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TIME: |
|
do_loiter_time(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT: |
|
do_loiter_to_alt(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH: |
|
set_mode(RTL); |
|
break; |
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT: |
|
do_continue_and_change_alt(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT: |
|
do_altitude_wait(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_VTOL_TAKEOFF: |
|
crash_state.is_crashed = false; |
|
return quadplane.do_vtol_takeoff(cmd); |
|
|
|
case MAV_CMD_NAV_VTOL_LAND: |
|
crash_state.is_crashed = false; |
|
return quadplane.do_vtol_land(cmd); |
|
|
|
// Conditional commands |
|
|
|
case MAV_CMD_CONDITION_DELAY: |
|
do_wait_delay(cmd); |
|
break; |
|
|
|
case MAV_CMD_CONDITION_DISTANCE: |
|
do_within_distance(cmd); |
|
break; |
|
|
|
case MAV_CMD_CONDITION_CHANGE_ALT: |
|
do_change_alt(cmd); |
|
break; |
|
|
|
// Do commands |
|
|
|
case MAV_CMD_DO_CHANGE_SPEED: |
|
do_change_speed(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_SET_HOME: |
|
do_set_home(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_SET_SERVO: |
|
ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm); |
|
break; |
|
|
|
case MAV_CMD_DO_SET_RELAY: |
|
ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state); |
|
break; |
|
|
|
case MAV_CMD_DO_REPEAT_SERVO: |
|
ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm, |
|
cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f); |
|
break; |
|
|
|
case MAV_CMD_DO_REPEAT_RELAY: |
|
ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count, |
|
cmd.content.repeat_relay.cycle_time * 1000.0f); |
|
break; |
|
|
|
case MAV_CMD_DO_INVERTED_FLIGHT: |
|
if (cmd.p1 == 0 || cmd.p1 == 1) { |
|
auto_state.inverted_flight = (bool)cmd.p1; |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set inverted %u", cmd.p1); |
|
} |
|
break; |
|
|
|
case MAV_CMD_DO_LAND_START: |
|
//ensure go around hasn't been set |
|
auto_state.commanded_go_around = false; |
|
break; |
|
|
|
case MAV_CMD_DO_FENCE_ENABLE: |
|
#if GEOFENCE_ENABLED == ENABLED |
|
if (cmd.p1 != 2) { |
|
if (!geofence_set_enabled((bool) cmd.p1, AUTO_TOGGLED)) { |
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Unable to set fence. Enabled state to %u", cmd.p1); |
|
} else { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set fence enabled state to %u", cmd.p1); |
|
} |
|
} else { //commanding to only disable floor |
|
if (! geofence_set_floor_enabled(false)) { |
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Unabled to disable fence floor"); |
|
} else { |
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Fence floor disabled"); |
|
} |
|
} |
|
#endif |
|
break; |
|
|
|
case MAV_CMD_DO_AUTOTUNE_ENABLE: |
|
autotune_enable(cmd.p1); |
|
break; |
|
|
|
#if CAMERA == ENABLED |
|
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty| |
|
break; |
|
|
|
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)| |
|
do_digicam_configure(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty| |
|
// do_digicam_control Send Digicam Control message with the camera library |
|
do_digicam_control(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_SET_CAM_TRIGG_DIST: |
|
camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters); |
|
break; |
|
#endif |
|
|
|
#if PARACHUTE == ENABLED |
|
case MAV_CMD_DO_PARACHUTE: |
|
do_parachute(cmd); |
|
break; |
|
#endif |
|
|
|
#if MOUNT == ENABLED |
|
// Sets the region of interest (ROI) for a sensor set or the |
|
// vehicle itself. This can then be used by the vehicles control |
|
// system to control the vehicle attitude and the attitude of various |
|
// devices such as cameras. |
|
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| |
|
case MAV_CMD_DO_SET_ROI: |
|
if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { |
|
// switch off the camera tracking if enabled |
|
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { |
|
camera_mount.set_mode_to_default(); |
|
} |
|
} else { |
|
// set mount's target location |
|
camera_mount.set_roi_target(cmd.content.location); |
|
} |
|
break; |
|
|
|
case MAV_CMD_DO_MOUNT_CONTROL: // 205 |
|
// point the camera to a specified angle |
|
camera_mount.set_angle_targets(cmd.content.mount_control.roll, |
|
cmd.content.mount_control.pitch, |
|
cmd.content.mount_control.yaw); |
|
break; |
|
#endif |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/******************************************************************************* |
|
Verify command Handlers |
|
|
|
Each type of mission element has a "verify" operation. The verify |
|
operation returns true when the mission element has completed and we |
|
should move onto the next mission element. |
|
*******************************************************************************/ |
|
|
|
bool Plane::verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete |
|
{ |
|
switch(cmd.id) { |
|
|
|
case MAV_CMD_NAV_TAKEOFF: |
|
return verify_takeoff(); |
|
|
|
case MAV_CMD_NAV_LAND: |
|
return verify_land(); |
|
|
|
case MAV_CMD_NAV_WAYPOINT: |
|
return verify_nav_wp(cmd); |
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM: |
|
return verify_loiter_unlim(); |
|
|
|
case MAV_CMD_NAV_LOITER_TURNS: |
|
return verify_loiter_turns(); |
|
|
|
case MAV_CMD_NAV_LOITER_TIME: |
|
return verify_loiter_time(); |
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT: |
|
return verify_loiter_to_alt(); |
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH: |
|
return verify_RTL(); |
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT: |
|
return verify_continue_and_change_alt(); |
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT: |
|
return verify_altitude_wait(cmd); |
|
|
|
// Conditional commands |
|
|
|
case MAV_CMD_CONDITION_DELAY: |
|
return verify_wait_delay(); |
|
|
|
case MAV_CMD_CONDITION_DISTANCE: |
|
return verify_within_distance(); |
|
|
|
case MAV_CMD_CONDITION_CHANGE_ALT: |
|
return verify_change_alt(); |
|
|
|
#if PARACHUTE == ENABLED |
|
case MAV_CMD_DO_PARACHUTE: |
|
// assume parachute was released successfully |
|
return true; |
|
break; |
|
#endif |
|
|
|
case MAV_CMD_NAV_VTOL_TAKEOFF: |
|
return quadplane.verify_vtol_takeoff(cmd); |
|
|
|
case MAV_CMD_NAV_VTOL_LAND: |
|
return quadplane.verify_vtol_land(cmd); |
|
|
|
// do commands (always return true) |
|
case MAV_CMD_DO_CHANGE_SPEED: |
|
case MAV_CMD_DO_SET_HOME: |
|
case MAV_CMD_DO_SET_SERVO: |
|
case MAV_CMD_DO_SET_RELAY: |
|
case MAV_CMD_DO_REPEAT_SERVO: |
|
case MAV_CMD_DO_REPEAT_RELAY: |
|
case MAV_CMD_DO_CONTROL_VIDEO: |
|
case MAV_CMD_DO_DIGICAM_CONFIGURE: |
|
case MAV_CMD_DO_DIGICAM_CONTROL: |
|
case MAV_CMD_DO_SET_CAM_TRIGG_DIST: |
|
case MAV_CMD_NAV_ROI: |
|
case MAV_CMD_DO_MOUNT_CONFIGURE: |
|
case MAV_CMD_DO_INVERTED_FLIGHT: |
|
case MAV_CMD_DO_LAND_START: |
|
case MAV_CMD_DO_FENCE_ENABLE: |
|
case MAV_CMD_DO_AUTOTUNE_ENABLE: |
|
return true; |
|
|
|
default: |
|
// error message |
|
if (AP_Mission::is_nav_cmd(cmd)) { |
|
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav. Invalid or no current nav cmd"); |
|
}else{ |
|
gcs_send_text(MAV_SEVERITY_WARNING,"Verify conditon. Invalid or no current condition cmd"); |
|
} |
|
// return true so that we do not get stuck at this command |
|
return true; |
|
} |
|
} |
|
|
|
/********************************************************************************/ |
|
// Nav (Must) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_RTL(void) |
|
{ |
|
auto_state.next_wp_no_crosstrack = true; |
|
auto_state.no_crosstrack = true; |
|
prev_WP_loc = current_loc; |
|
next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); |
|
setup_terrain_target_alt(next_WP_loc); |
|
set_target_altitude_location(next_WP_loc); |
|
|
|
if (g.loiter_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
|
|
update_flight_stage(); |
|
setup_glide_slope(); |
|
setup_turn_angle(); |
|
|
|
if (should_log(MASK_LOG_MODE)) |
|
DataFlash.Log_Write_Mode(control_mode); |
|
} |
|
|
|
void Plane::do_takeoff(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
prev_WP_loc = current_loc; |
|
set_next_WP(cmd.content.location); |
|
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0 |
|
auto_state.takeoff_pitch_cd = (int16_t)cmd.p1 * 100; |
|
if (auto_state.takeoff_pitch_cd <= 0) { |
|
// if the mission doesn't specify a pitch use 4 degrees |
|
auto_state.takeoff_pitch_cd = 400; |
|
} |
|
auto_state.takeoff_altitude_rel_cm = next_WP_loc.alt - home.alt; |
|
next_WP_loc.lat = home.lat + 10; |
|
next_WP_loc.lng = home.lng + 10; |
|
auto_state.takeoff_speed_time_ms = 0; |
|
auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction |
|
// Flag also used to override "on the ground" throttle disable |
|
|
|
// zero locked course |
|
steer_state.locked_course_err = 0; |
|
steer_state.hold_course_cd = -1; |
|
auto_state.baro_takeoff_alt = barometer.get_altitude(); |
|
} |
|
|
|
void Plane::do_nav_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
set_next_WP(cmd.content.location); |
|
} |
|
|
|
void Plane::do_land(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
auto_state.commanded_go_around = false; |
|
set_next_WP(cmd.content.location); |
|
|
|
// configure abort altitude and pitch |
|
// if NAV_LAND has an abort altitude then use it, else use last takeoff, else use 50m |
|
if (cmd.p1 > 0) { |
|
auto_state.takeoff_altitude_rel_cm = (int16_t)cmd.p1 * 100; |
|
} else if (auto_state.takeoff_altitude_rel_cm <= 0) { |
|
auto_state.takeoff_altitude_rel_cm = 3000; |
|
} |
|
|
|
if (auto_state.takeoff_pitch_cd <= 0) { |
|
// If no takeoff command has ever been used, default to a conservative 10deg |
|
auto_state.takeoff_pitch_cd = 1000; |
|
} |
|
|
|
#if RANGEFINDER_ENABLED == ENABLED |
|
// zero rangefinder state, start to accumulate good samples now |
|
memset(&rangefinder_state, 0, sizeof(rangefinder_state)); |
|
#endif |
|
} |
|
|
|
void Plane::loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (cmd.content.location.flags.loiter_ccw) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
} |
|
|
|
void Plane::do_loiter_unlimited(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
location_sanitize(current_loc, cmdloc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
} |
|
|
|
void Plane::do_loiter_turns(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
location_sanitize(current_loc, cmdloc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL; |
|
condition_value = 1; // used to signify primary turns goal not yet met |
|
} |
|
|
|
void Plane::do_loiter_time(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
location_sanitize(current_loc, cmdloc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
// we set start_time_ms when we reach the waypoint |
|
loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // convert sec to ms |
|
condition_value = 1; // used to signify primary time goal not yet met |
|
} |
|
|
|
void Plane::do_continue_and_change_alt(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// select heading method. Either mission, gps bearing projection or yaw based |
|
// If prev_WP_loc and next_WP_loc are different then an accurate wp based bearing can |
|
// be computed. However, if we had just changed modes before this, such as an aborted landing |
|
// via mode change, the prev and next wps are the same. |
|
float bearing; |
|
if (!locations_are_same(prev_WP_loc, next_WP_loc)) { |
|
// use waypoint based bearing, this is the usual case |
|
steer_state.hold_course_cd = -1; |
|
} else if (ahrs.get_gps().status() >= AP_GPS::GPS_OK_FIX_2D) { |
|
// use gps ground course based bearing hold |
|
steer_state.hold_course_cd = -1; |
|
bearing = ahrs.get_gps().ground_course_cd() * 0.01f; |
|
location_update(next_WP_loc, bearing, 1000); // push it out 1km |
|
} else { |
|
// use yaw based bearing hold |
|
steer_state.hold_course_cd = wrap_360_cd(ahrs.yaw_sensor); |
|
bearing = ahrs.yaw_sensor * 0.01f; |
|
location_update(next_WP_loc, bearing, 1000); // push it out 1km |
|
} |
|
|
|
next_WP_loc.alt = cmd.content.location.alt + home.alt; |
|
condition_value = cmd.p1; |
|
reset_offset_altitude(); |
|
} |
|
|
|
void Plane::do_altitude_wait(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// set all servos to trim until we reach altitude or descent speed |
|
auto_state.idle_mode = true; |
|
} |
|
|
|
void Plane::do_loiter_to_alt(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
//set target alt |
|
Location loc = cmd.content.location; |
|
location_sanitize(current_loc, loc); |
|
set_next_WP(loc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
// used to signify primary turns goal not yet met when non-zero |
|
condition_value = next_WP_loc.alt; |
|
if (condition_value == 0) { |
|
// the value of 0 is used to signify it has been reached. Lets bump alt to 1 which is 10cm. Close enough! |
|
condition_value = 1; |
|
} |
|
} |
|
|
|
/********************************************************************************/ |
|
// Verify Nav (Must) commands |
|
/********************************************************************************/ |
|
bool Plane::verify_takeoff() |
|
{ |
|
if (ahrs.yaw_initialised() && steer_state.hold_course_cd == -1) { |
|
const float min_gps_speed = 5; |
|
if (auto_state.takeoff_speed_time_ms == 0 && |
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D && |
|
gps.ground_speed() > min_gps_speed) { |
|
auto_state.takeoff_speed_time_ms = millis(); |
|
} |
|
if (auto_state.takeoff_speed_time_ms != 0 && |
|
millis() - auto_state.takeoff_speed_time_ms >= 2000) { |
|
// once we reach sufficient speed for good GPS course |
|
// estimation we save our current GPS ground course |
|
// corrected for summed yaw to set the take off |
|
// course. This keeps wings level until we are ready to |
|
// rotate, and also allows us to cope with arbitary |
|
// compass errors for auto takeoff |
|
float takeoff_course = wrap_PI(radians(gps.ground_course_cd()*0.01f)) - steer_state.locked_course_err; |
|
takeoff_course = wrap_PI(takeoff_course); |
|
steer_state.hold_course_cd = wrap_360_cd(degrees(takeoff_course)*100); |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Holding course %ld at %.1fm/s (%.1f)", |
|
steer_state.hold_course_cd, |
|
(double)gps.ground_speed(), |
|
(double)degrees(steer_state.locked_course_err)); |
|
} |
|
} |
|
|
|
if (steer_state.hold_course_cd != -1) { |
|
// call navigation controller for heading hold |
|
nav_controller->update_heading_hold(steer_state.hold_course_cd); |
|
} else { |
|
nav_controller->update_level_flight(); |
|
} |
|
|
|
// see if we have reached takeoff altitude |
|
int32_t relative_alt_cm = adjusted_relative_altitude_cm(); |
|
if (relative_alt_cm > auto_state.takeoff_altitude_rel_cm) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Takeoff complete at %.2fm", |
|
(double)(relative_alt_cm*0.01f)); |
|
steer_state.hold_course_cd = -1; |
|
auto_state.takeoff_complete = true; |
|
next_WP_loc = prev_WP_loc = current_loc; |
|
|
|
#if GEOFENCE_ENABLED == ENABLED |
|
if (g.fence_autoenable > 0) { |
|
if (! geofence_set_enabled(true, AUTO_TOGGLED)) { |
|
gcs_send_text(MAV_SEVERITY_NOTICE, "Enable fence failed (cannot autoenable"); |
|
} else { |
|
gcs_send_text(MAV_SEVERITY_INFO, "Fence enabled (autoenabled)"); |
|
} |
|
} |
|
#endif |
|
|
|
// don't cross-track on completion of takeoff, as otherwise we |
|
// can end up doing too sharp a turn |
|
auto_state.next_wp_no_crosstrack = true; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
update navigation for normal mission waypoints. Return true when the |
|
waypoint is complete |
|
*/ |
|
bool Plane::verify_nav_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
steer_state.hold_course_cd = -1; |
|
|
|
if (auto_state.no_crosstrack) { |
|
nav_controller->update_waypoint(current_loc, next_WP_loc); |
|
} else { |
|
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); |
|
} |
|
|
|
// see if the user has specified a maximum distance to waypoint |
|
if (g.waypoint_max_radius > 0 && |
|
auto_state.wp_distance > (uint16_t)g.waypoint_max_radius) { |
|
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) { |
|
// this is needed to ensure completion of the waypoint |
|
prev_WP_loc = current_loc; |
|
} |
|
return false; |
|
} |
|
|
|
float acceptance_distance = nav_controller->turn_distance(g.waypoint_radius, auto_state.next_turn_angle); |
|
if (cmd.p1 > 0) { |
|
// allow user to override acceptance radius |
|
acceptance_distance = cmd.p1; |
|
} |
|
|
|
if (auto_state.wp_distance <= acceptance_distance) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Reached waypoint #%i dist %um", |
|
(unsigned)mission.get_current_nav_cmd().index, |
|
(unsigned)get_distance(current_loc, next_WP_loc)); |
|
return true; |
|
} |
|
|
|
// have we flown past the waypoint? |
|
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Passed waypoint #%i dist %um", |
|
(unsigned)mission.get_current_nav_cmd().index, |
|
(unsigned)get_distance(current_loc, next_WP_loc)); |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
bool Plane::verify_loiter_unlim() |
|
{ |
|
if (control_mode == AUTO && mission.state() != AP_Mission::MISSION_RUNNING) { |
|
// end of mission RTL |
|
update_loiter(g.rtl_radius? g.rtl_radius : g.loiter_radius); |
|
} else if (mission.get_current_nav_cmd().p1 <= 1 && abs(g.rtl_radius) > 1) { |
|
// if mission radius is 0,1, and rtl_radius is valid, use rtl_radius. |
|
loiter.direction = (g.rtl_radius < 0) ? -1 : 1; |
|
update_loiter(abs(g.rtl_radius)); |
|
} else { |
|
// else use mission radius |
|
update_loiter(mission.get_current_nav_cmd().p1); |
|
} |
|
return false; |
|
} |
|
|
|
bool Plane::verify_loiter_time() |
|
{ |
|
bool result = false; |
|
// mission radius is always g.loiter_radius |
|
update_loiter(0); |
|
|
|
if (loiter.start_time_ms == 0) { |
|
if (nav_controller->reached_loiter_target() && loiter.sum_cd > 1) { |
|
// we've reached the target, start the timer |
|
loiter.start_time_ms = millis(); |
|
} |
|
} else if (condition_value != 0) { |
|
// primary goal, loiter time |
|
if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) { |
|
// primary goal completed, initialize secondary heading goal |
|
condition_value = 0; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER time complete"); |
|
} |
|
return result; |
|
} |
|
|
|
bool Plane::verify_loiter_turns() |
|
{ |
|
bool result = false; |
|
uint16_t radius = HIGHBYTE(mission.get_current_nav_cmd().p1); |
|
update_loiter(radius); |
|
|
|
if (condition_value != 0) { |
|
// primary goal, loiter time |
|
if (loiter.sum_cd > loiter.total_cd && loiter.sum_cd > 1) { |
|
// primary goal completed, initialize secondary heading goal |
|
condition_value = 0; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER orbits complete"); |
|
} |
|
return result; |
|
} |
|
|
|
/* |
|
verify a LOITER_TO_ALT command. This involves checking we have |
|
reached both the desired altitude and desired heading. The desired |
|
altitude only needs to be reached once. |
|
*/ |
|
bool Plane::verify_loiter_to_alt() |
|
{ |
|
bool result = false; |
|
update_loiter(mission.get_current_nav_cmd().p1); |
|
|
|
//has target altitude been reached? |
|
if (condition_value != 0) { |
|
// primary goal, loiter alt |
|
if (labs(condition_value - current_loc.alt) < 500 && loiter.sum_cd > 1) { |
|
// primary goal completed, initialize secondary heading goal |
|
condition_value = 0; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs_send_text(MAV_SEVERITY_WARNING,"Verify nav: LOITER alt complete"); |
|
} |
|
return result; |
|
} |
|
|
|
bool Plane::verify_RTL() |
|
{ |
|
if (g.rtl_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
update_loiter(abs(g.rtl_radius)); |
|
if (auto_state.wp_distance <= (uint32_t)MAX(g.waypoint_radius,0) || |
|
nav_controller->reached_loiter_target()) { |
|
gcs_send_text(MAV_SEVERITY_INFO,"Reached HOME"); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
bool Plane::verify_continue_and_change_alt() |
|
{ |
|
// is waypoint info not available and heading hold is? |
|
if (locations_are_same(prev_WP_loc, next_WP_loc) && |
|
steer_state.hold_course_cd != -1) { |
|
//keep flying the same course with fixed steering heading computed at start if cmd |
|
nav_controller->update_heading_hold(steer_state.hold_course_cd); |
|
} |
|
else { |
|
// Is the next_WP less than 200 m away? |
|
if (get_distance(current_loc, next_WP_loc) < 200.0f) { |
|
//push another 300 m down the line |
|
int32_t next_wp_bearing_cd = get_bearing_cd(prev_WP_loc, next_WP_loc); |
|
location_update(next_WP_loc, next_wp_bearing_cd * 0.01f, 300.0f); |
|
} |
|
|
|
//keep flying the same course |
|
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); |
|
} |
|
|
|
//climbing? |
|
if (condition_value == 1 && adjusted_altitude_cm() >= next_WP_loc.alt) { |
|
return true; |
|
} |
|
//descending? |
|
else if (condition_value == 2 && |
|
adjusted_altitude_cm() <= next_WP_loc.alt) { |
|
return true; |
|
} |
|
//don't care if we're climbing or descending |
|
else if (labs(adjusted_altitude_cm() - next_WP_loc.alt) <= 500) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/* |
|
see if we have reached altitude or descent speed |
|
*/ |
|
bool Plane::verify_altitude_wait(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
if (current_loc.alt > cmd.content.altitude_wait.altitude*100.0f) { |
|
gcs_send_text(MAV_SEVERITY_INFO,"Reached altitude"); |
|
return true; |
|
} |
|
if (auto_state.sink_rate > cmd.content.altitude_wait.descent_rate) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Reached descent rate %.1f m/s", (double)auto_state.sink_rate); |
|
return true; |
|
} |
|
|
|
// if requested, wiggle servos |
|
if (cmd.content.altitude_wait.wiggle_time != 0) { |
|
static uint32_t last_wiggle_ms; |
|
if (auto_state.idle_wiggle_stage == 0 && |
|
AP_HAL::millis() - last_wiggle_ms > cmd.content.altitude_wait.wiggle_time*1000) { |
|
auto_state.idle_wiggle_stage = 1; |
|
last_wiggle_ms = AP_HAL::millis(); |
|
} |
|
// idle_wiggle_stage is updated in set_servos_idle() |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Condition (May) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_wait_delay(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
condition_start = millis(); |
|
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds |
|
} |
|
|
|
/* |
|
process a DO_CHANGE_ALT request |
|
*/ |
|
void Plane::do_change_alt(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
condition_rate = labs((int)cmd.content.location.lat); // climb rate in cm/s |
|
condition_value = cmd.content.location.alt; // To-Do: ensure this altitude is an absolute altitude? |
|
if (condition_value < adjusted_altitude_cm()) { |
|
condition_rate = -condition_rate; |
|
} |
|
set_target_altitude_current_adjusted(); |
|
change_target_altitude(condition_rate/10); |
|
next_WP_loc.alt = condition_value; // For future nav calculations |
|
reset_offset_altitude(); |
|
setup_glide_slope(); |
|
} |
|
|
|
void Plane::do_within_distance(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
condition_value = cmd.content.distance.meters; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Verify Condition (May) commands |
|
/********************************************************************************/ |
|
|
|
bool Plane::verify_wait_delay() |
|
{ |
|
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { |
|
condition_value = 0; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
bool Plane::verify_change_alt() |
|
{ |
|
if( (condition_rate>=0 && adjusted_altitude_cm() >= condition_value) || |
|
(condition_rate<=0 && adjusted_altitude_cm() <= condition_value)) { |
|
condition_value = 0; |
|
return true; |
|
} |
|
// condition_rate is climb rate in cm/s. |
|
// We divide by 10 because this function is called at 10hz |
|
change_target_altitude(condition_rate/10); |
|
return false; |
|
} |
|
|
|
bool Plane::verify_within_distance() |
|
{ |
|
if (auto_state.wp_distance < MAX(condition_value,0)) { |
|
condition_value = 0; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Do (Now) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_loiter_at_location() |
|
{ |
|
if (g.loiter_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
next_WP_loc = current_loc; |
|
} |
|
|
|
void Plane::do_change_speed(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
switch (cmd.content.speed.speed_type) |
|
{ |
|
case 0: // Airspeed |
|
if (cmd.content.speed.target_ms > 0) { |
|
g.airspeed_cruise_cm.set(cmd.content.speed.target_ms * 100); |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set airspeed %u m/s", (unsigned)cmd.content.speed.target_ms); |
|
} |
|
break; |
|
case 1: // Ground speed |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set groundspeed %u", (unsigned)cmd.content.speed.target_ms); |
|
g.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100); |
|
break; |
|
} |
|
|
|
if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Set throttle %u", (unsigned)cmd.content.speed.throttle_pct); |
|
aparm.throttle_cruise.set(cmd.content.speed.throttle_pct); |
|
} |
|
} |
|
|
|
void Plane::do_set_home(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
init_home(); |
|
} else { |
|
ahrs.set_home(cmd.content.location); |
|
home_is_set = HOME_SET_NOT_LOCKED; |
|
Log_Write_Home_And_Origin(); |
|
GCS_MAVLINK::send_home_all(cmd.content.location); |
|
} |
|
} |
|
|
|
// do_digicam_configure Send Digicam Configure message with the camera library |
|
void Plane::do_digicam_configure(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
#if CAMERA == ENABLED |
|
camera.configure(cmd.content.digicam_configure.shooting_mode, |
|
cmd.content.digicam_configure.shutter_speed, |
|
cmd.content.digicam_configure.aperture, |
|
cmd.content.digicam_configure.ISO, |
|
cmd.content.digicam_configure.exposure_type, |
|
cmd.content.digicam_configure.cmd_id, |
|
cmd.content.digicam_configure.engine_cutoff_time); |
|
#endif |
|
} |
|
|
|
// do_digicam_control Send Digicam Control message with the camera library |
|
void Plane::do_digicam_control(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
#if CAMERA == ENABLED |
|
if (camera.control(cmd.content.digicam_control.session, |
|
cmd.content.digicam_control.zoom_pos, |
|
cmd.content.digicam_control.zoom_step, |
|
cmd.content.digicam_control.focus_lock, |
|
cmd.content.digicam_control.shooting_cmd, |
|
cmd.content.digicam_control.cmd_id)) { |
|
log_picture(); |
|
} |
|
#endif |
|
} |
|
|
|
// do_take_picture - take a picture with the camera library |
|
void Plane::do_take_picture() |
|
{ |
|
#if CAMERA == ENABLED |
|
camera.trigger_pic(true); |
|
log_picture(); |
|
#endif |
|
} |
|
|
|
#if PARACHUTE == ENABLED |
|
// do_parachute - configure or release parachute |
|
void Plane::do_parachute(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
switch (cmd.p1) { |
|
case PARACHUTE_DISABLE: |
|
parachute.enabled(false); |
|
break; |
|
case PARACHUTE_ENABLE: |
|
parachute.enabled(true); |
|
break; |
|
case PARACHUTE_RELEASE: |
|
parachute_release(); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
} |
|
#endif |
|
|
|
// log_picture - log picture taken and send feedback to GCS |
|
void Plane::log_picture() |
|
{ |
|
#if CAMERA == ENABLED |
|
if (!camera.using_feedback_pin()) { |
|
gcs_send_message(MSG_CAMERA_FEEDBACK); |
|
if (should_log(MASK_LOG_CAMERA)) { |
|
DataFlash.Log_Write_Camera(ahrs, gps, current_loc); |
|
} |
|
} else { |
|
if (should_log(MASK_LOG_CAMERA)) { |
|
DataFlash.Log_Write_Trigger(ahrs, gps, current_loc); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
// start_command_callback - callback function called from ap-mission when it begins a new mission command |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
bool Plane::start_command_callback(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
if (control_mode == AUTO) { |
|
return start_command(cmd); |
|
} |
|
return true; |
|
} |
|
|
|
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
bool Plane::verify_command_callback(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (control_mode == AUTO) { |
|
bool cmd_complete = verify_command(cmd); |
|
|
|
// send message to GCS |
|
if (cmd_complete) { |
|
gcs_send_mission_item_reached_message(cmd.index); |
|
} |
|
|
|
return cmd_complete; |
|
} |
|
return false; |
|
} |
|
|
|
// exit_mission_callback - callback function called from ap-mission when the mission has completed |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
void Plane::exit_mission_callback() |
|
{ |
|
if (control_mode == AUTO) { |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Returning to HOME"); |
|
memset(&auto_rtl_command, 0, sizeof(auto_rtl_command)); |
|
auto_rtl_command.content.location = |
|
rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); |
|
auto_rtl_command.id = MAV_CMD_NAV_LOITER_UNLIM; |
|
setup_terrain_target_alt(auto_rtl_command.content.location); |
|
update_flight_stage(); |
|
setup_glide_slope(); |
|
setup_turn_angle(); |
|
start_command(auto_rtl_command); |
|
} |
|
} |
|
|
|
bool Plane::verify_loiter_heading(bool init) |
|
{ |
|
//Get the lat/lon of next Nav waypoint after this one: |
|
AP_Mission::Mission_Command next_nav_cmd; |
|
if (! mission.get_next_nav_cmd(mission.get_current_nav_index() + 1, |
|
next_nav_cmd)) { |
|
//no next waypoint to shoot for -- go ahead and break out of loiter |
|
return true; |
|
} |
|
|
|
if (get_distance(next_WP_loc, next_nav_cmd.content.location) < labs(g.loiter_radius)) { |
|
/* Whenever next waypoint is within the loiter radius, |
|
maintaining loiter would prevent us from ever pointing toward the next waypoint. |
|
Hence break out of loiter immediately |
|
*/ |
|
return true; |
|
} |
|
|
|
// Bearing in degrees |
|
int32_t bearing_cd = get_bearing_cd(current_loc,next_nav_cmd.content.location); |
|
|
|
// get current heading. |
|
int32_t heading_cd = gps.ground_course_cd(); |
|
|
|
int32_t heading_err_cd = wrap_180_cd(bearing_cd - heading_cd); |
|
|
|
if (init) { |
|
loiter.total_cd = wrap_360_cd(bearing_cd - heading_cd); |
|
loiter.sum_cd = 0; |
|
} |
|
|
|
/* |
|
Check to see if the the plane is heading toward the land |
|
waypoint. We use 20 degrees (+/-10 deg) of margin so that |
|
we can handle 200 degrees/second of yaw. Allow turn count |
|
to stop it too to ensure we don't loop around forever in |
|
case high winds are forcing us beyond 200 deg/sec at this |
|
particular moment. |
|
*/ |
|
if (labs(heading_err_cd) <= 1000 || |
|
loiter.sum_cd > loiter.total_cd) { |
|
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp |
|
next_WP_loc = current_loc; |
|
return true; |
|
} |
|
return false; |
|
}
|
|
|