You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
591 lines
17 KiB
591 lines
17 KiB
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
|
|
#include "AP_HAL_SITL.h" |
|
#include "AP_HAL_SITL_Namespace.h" |
|
#include "HAL_SITL_Class.h" |
|
#include "UARTDriver.h" |
|
#include "Scheduler.h" |
|
|
|
#include <stdio.h> |
|
#include <signal.h> |
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <errno.h> |
|
#include <sys/select.h> |
|
|
|
#include <AP_Param/AP_Param.h> |
|
#include <SITL/SIM_JSBSim.h> |
|
#include <AP_HAL/utility/Socket.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
using namespace HALSITL; |
|
|
|
void SITL_State::_set_param_default(const char *parm) |
|
{ |
|
char *pdup = strdup(parm); |
|
char *p = strchr(pdup, '='); |
|
if (p == nullptr) { |
|
printf("Please specify parameter as NAME=VALUE"); |
|
exit(1); |
|
} |
|
float value = strtof(p+1, nullptr); |
|
*p = 0; |
|
enum ap_var_type var_type; |
|
AP_Param *vp = AP_Param::find(pdup, &var_type); |
|
if (vp == nullptr) { |
|
printf("Unknown parameter %s\n", pdup); |
|
exit(1); |
|
} |
|
if (var_type == AP_PARAM_FLOAT) { |
|
((AP_Float *)vp)->set_and_save(value); |
|
} else if (var_type == AP_PARAM_INT32) { |
|
((AP_Int32 *)vp)->set_and_save(value); |
|
} else if (var_type == AP_PARAM_INT16) { |
|
((AP_Int16 *)vp)->set_and_save(value); |
|
} else if (var_type == AP_PARAM_INT8) { |
|
((AP_Int8 *)vp)->set_and_save(value); |
|
} else { |
|
printf("Unable to set parameter %s\n", pdup); |
|
exit(1); |
|
} |
|
printf("Set parameter %s to %f\n", pdup, value); |
|
free(pdup); |
|
} |
|
|
|
|
|
/* |
|
setup for SITL handling |
|
*/ |
|
void SITL_State::_sitl_setup(const char *home_str) |
|
{ |
|
_home_str = home_str; |
|
|
|
#if !defined(__CYGWIN__) && !defined(__CYGWIN64__) |
|
_parent_pid = getppid(); |
|
#endif |
|
|
|
#ifndef HIL_MODE |
|
_setup_fdm(); |
|
#endif |
|
fprintf(stdout, "Starting SITL input\n"); |
|
|
|
// find the barometer object if it exists |
|
_sitl = AP::sitl(); |
|
_barometer = AP_Baro::get_singleton(); |
|
_ins = AP_InertialSensor::get_singleton(); |
|
_compass = Compass::get_singleton(); |
|
#if AP_TERRAIN_AVAILABLE |
|
_terrain = reinterpret_cast<AP_Terrain *>(AP_Param::find_object("TERRAIN_")); |
|
#endif |
|
|
|
if (_sitl != nullptr) { |
|
// setup some initial values |
|
#ifndef HIL_MODE |
|
_update_airspeed(0); |
|
_update_gps(0, 0, 0, 0, 0, 0, 0, false); |
|
_update_rangefinder(0); |
|
#endif |
|
if (enable_gimbal) { |
|
gimbal = new SITL::Gimbal(_sitl->state); |
|
} |
|
|
|
sitl_model->set_sprayer(&_sitl->sprayer_sim); |
|
sitl_model->set_gripper_servo(&_sitl->gripper_sim); |
|
sitl_model->set_gripper_epm(&_sitl->gripper_epm_sim); |
|
sitl_model->set_parachute(&_sitl->parachute_sim); |
|
sitl_model->set_precland(&_sitl->precland_sim); |
|
|
|
if (_use_fg_view) { |
|
fg_socket.connect(_fg_address, _fg_view_port); |
|
} |
|
|
|
fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port); |
|
_sitl->irlock_port = _irlock_port; |
|
} |
|
|
|
if (_synthetic_clock_mode) { |
|
// start with non-zero clock |
|
hal.scheduler->stop_clock(1); |
|
} |
|
} |
|
|
|
|
|
#ifndef HIL_MODE |
|
/* |
|
setup a SITL FDM listening UDP port |
|
*/ |
|
void SITL_State::_setup_fdm(void) |
|
{ |
|
if (!_sitl_rc_in.reuseaddress()) { |
|
fprintf(stderr, "SITL: socket reuseaddress failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); |
|
fprintf(stderr, "Aborting launch...\n"); |
|
exit(1); |
|
} |
|
if (!_sitl_rc_in.bind("0.0.0.0", _rcin_port)) { |
|
fprintf(stderr, "SITL: socket bind failed on RC in port : %d - %s\n", _rcin_port, strerror(errno)); |
|
fprintf(stderr, "Aborting launch...\n"); |
|
exit(1); |
|
} |
|
if (!_sitl_rc_in.set_blocking(false)) { |
|
fprintf(stderr, "SITL: socket set_blocking(false) failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); |
|
fprintf(stderr, "Aborting launch...\n"); |
|
exit(1); |
|
} |
|
if (!_sitl_rc_in.set_cloexec()) { |
|
fprintf(stderr, "SITL: socket set_cloexec() failed on RC in port: %d - %s\n", _rcin_port, strerror(errno)); |
|
fprintf(stderr, "Aborting launch...\n"); |
|
exit(1); |
|
} |
|
} |
|
#endif |
|
|
|
|
|
/* |
|
step the FDM by one time step |
|
*/ |
|
void SITL_State::_fdm_input_step(void) |
|
{ |
|
static uint32_t last_pwm_input = 0; |
|
|
|
_fdm_input_local(); |
|
|
|
/* make sure we die if our parent dies */ |
|
if (kill(_parent_pid, 0) != 0) { |
|
exit(1); |
|
} |
|
|
|
if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) { |
|
return; |
|
} |
|
|
|
// simulate RC input at 50Hz |
|
if (AP_HAL::millis() - last_pwm_input >= 20 && _sitl->rc_fail != SITL::SITL::SITL_RCFail_NoPulses) { |
|
last_pwm_input = AP_HAL::millis(); |
|
new_rc_input = true; |
|
} |
|
|
|
_scheduler->sitl_begin_atomic(); |
|
|
|
if (_update_count == 0 && _sitl != nullptr) { |
|
_update_gps(0, 0, 0, 0, 0, 0, 0, false); |
|
_scheduler->timer_event(); |
|
_scheduler->sitl_end_atomic(); |
|
return; |
|
} |
|
|
|
if (_sitl != nullptr) { |
|
_update_gps(_sitl->state.latitude, _sitl->state.longitude, |
|
_sitl->state.altitude, |
|
_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD, |
|
_sitl->state.yawDeg, |
|
!_sitl->gps_disable); |
|
_update_airspeed(_sitl->state.airspeed); |
|
_update_rangefinder(_sitl->state.range); |
|
|
|
if (_sitl->adsb_plane_count >= 0 && |
|
adsb == nullptr) { |
|
adsb = new SITL::ADSB(_sitl->state, _home_str); |
|
} else if (_sitl->adsb_plane_count == -1 && |
|
adsb != nullptr) { |
|
delete adsb; |
|
adsb = nullptr; |
|
} |
|
} |
|
|
|
// trigger all APM timers. |
|
_scheduler->timer_event(); |
|
_scheduler->sitl_end_atomic(); |
|
} |
|
|
|
|
|
void SITL_State::wait_clock(uint64_t wait_time_usec) |
|
{ |
|
while (AP_HAL::micros64() < wait_time_usec) { |
|
if (hal.scheduler->in_main_thread() || |
|
Scheduler::from(hal.scheduler)->semaphore_wait_hack_required()) { |
|
_fdm_input_step(); |
|
} else { |
|
usleep(1000); |
|
} |
|
} |
|
} |
|
|
|
#define streq(a, b) (!strcmp(a, b)) |
|
int SITL_State::sim_fd(const char *name, const char *arg) |
|
{ |
|
if (streq(name, "vicon")) { |
|
if (vicon != nullptr) { |
|
AP_HAL::panic("Only one vicon system at a time"); |
|
} |
|
vicon = new SITL::Vicon(); |
|
return vicon->fd(); |
|
} |
|
AP_HAL::panic("unknown simulated device: %s", name); |
|
} |
|
|
|
#ifndef HIL_MODE |
|
/* |
|
check for a SITL RC input packet |
|
*/ |
|
void SITL_State::_check_rc_input(void) |
|
{ |
|
uint32_t count = 0; |
|
while (_read_rc_sitl_input()) { |
|
count++; |
|
} |
|
|
|
if (count > 100) { |
|
::fprintf(stderr, "Read %u rc inputs\n", count); |
|
} |
|
} |
|
|
|
bool SITL_State::_read_rc_sitl_input() |
|
{ |
|
struct pwm_packet { |
|
uint16_t pwm[16]; |
|
} pwm_pkt; |
|
|
|
const ssize_t size = _sitl_rc_in.recv(&pwm_pkt, sizeof(pwm_pkt), 0); |
|
switch (size) { |
|
case -1: |
|
return false; |
|
case 8*2: |
|
case 16*2: { |
|
// a packet giving the receiver PWM inputs |
|
for (uint8_t i=0; i<size/2; i++) { |
|
// setup the pwm input for the RC channel inputs |
|
if (i < _sitl->state.rcin_chan_count) { |
|
// we're using rc from simulator |
|
continue; |
|
} |
|
uint16_t pwm = pwm_pkt.pwm[i]; |
|
if (pwm != 0) { |
|
if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_Throttle950) { |
|
if (i == 2) { |
|
// set throttle (assumed to be on channel 3...) |
|
pwm = 950; |
|
} else { |
|
// centre all other inputs |
|
pwm = 1500; |
|
} |
|
} |
|
pwm_input[i] = pwm; |
|
} |
|
} |
|
return true; |
|
} |
|
default: |
|
fprintf(stderr, "Malformed SITL RC input (%li)", size); |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
output current state to flightgear |
|
*/ |
|
void SITL_State::_output_to_flightgear(void) |
|
{ |
|
SITL::FGNetFDM fdm {}; |
|
const SITL::sitl_fdm &sfdm = _sitl->state; |
|
|
|
fdm.version = 0x18; |
|
fdm.padding = 0; |
|
fdm.longitude = DEG_TO_RAD_DOUBLE*sfdm.longitude; |
|
fdm.latitude = DEG_TO_RAD_DOUBLE*sfdm.latitude; |
|
fdm.altitude = sfdm.altitude; |
|
fdm.agl = sfdm.altitude; |
|
fdm.phi = radians(sfdm.rollDeg); |
|
fdm.theta = radians(sfdm.pitchDeg); |
|
fdm.psi = radians(sfdm.yawDeg); |
|
if (_vehicle == ArduCopter) { |
|
fdm.num_engines = 4; |
|
for (uint8_t i=0; i<4; i++) { |
|
fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000); |
|
} |
|
} else { |
|
fdm.num_engines = 4; |
|
fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000); |
|
// for quadplane |
|
fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000); |
|
fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000); |
|
fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000); |
|
} |
|
fdm.ByteSwap(); |
|
|
|
fg_socket.send(&fdm, sizeof(fdm)); |
|
} |
|
|
|
/* |
|
get FDM input from a local model |
|
*/ |
|
void SITL_State::_fdm_input_local(void) |
|
{ |
|
struct sitl_input input; |
|
|
|
// check for direct RC input |
|
_check_rc_input(); |
|
|
|
// construct servos structure for FDM |
|
_simulator_servos(input); |
|
|
|
// update the model |
|
sitl_model->update_model(input); |
|
|
|
// get FDM output from the model |
|
if (_sitl) { |
|
sitl_model->fill_fdm(_sitl->state); |
|
_sitl->update_rate_hz = sitl_model->get_rate_hz(); |
|
|
|
if (_sitl->rc_fail == SITL::SITL::SITL_RCFail_None) { |
|
for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) { |
|
pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000; |
|
} |
|
} |
|
} |
|
|
|
if (gimbal != nullptr) { |
|
gimbal->update(); |
|
} |
|
if (adsb != nullptr) { |
|
adsb->update(); |
|
} |
|
if (vicon != nullptr) { |
|
Quaternion attitude; |
|
sitl_model->get_attitude(attitude); |
|
vicon->update(sitl_model->get_location(), |
|
sitl_model->get_position(), |
|
attitude); |
|
} |
|
|
|
if (_sitl && _use_fg_view) { |
|
_output_to_flightgear(); |
|
} |
|
|
|
// update simulation time |
|
if (_sitl) { |
|
hal.scheduler->stop_clock(_sitl->state.timestamp_us); |
|
} else { |
|
hal.scheduler->stop_clock(AP_HAL::micros64()+100); |
|
} |
|
|
|
set_height_agl(); |
|
|
|
_synthetic_clock_mode = true; |
|
_update_count++; |
|
} |
|
#endif |
|
|
|
/* |
|
create sitl_input structure for sending to FDM |
|
*/ |
|
void SITL_State::_simulator_servos(struct sitl_input &input) |
|
{ |
|
static uint32_t last_update_usec; |
|
|
|
/* this maps the registers used for PWM outputs. The RC |
|
* driver updates these whenever it wants the channel output |
|
* to change */ |
|
uint8_t i; |
|
|
|
if (last_update_usec == 0 || !output_ready) { |
|
for (i=0; i<SITL_NUM_CHANNELS; i++) { |
|
pwm_output[i] = 1000; |
|
} |
|
if (_vehicle == ArduPlane) { |
|
pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500; |
|
} |
|
if (_vehicle == APMrover2) { |
|
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500; |
|
} |
|
} |
|
|
|
// output at chosen framerate |
|
uint32_t now = AP_HAL::micros(); |
|
last_update_usec = now; |
|
|
|
float altitude = _barometer?_barometer->get_altitude():0; |
|
float wind_speed = 0; |
|
float wind_direction = 0; |
|
float wind_dir_z = 0; |
|
|
|
// give 5 seconds to calibrate airspeed sensor at 0 wind speed |
|
if (wind_start_delay_micros == 0) { |
|
wind_start_delay_micros = now; |
|
} else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) { |
|
// The EKF does not like step inputs so this LPF keeps it happy. |
|
wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed); |
|
wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction); |
|
wind_dir_z = _sitl->wind_dir_z_active = (0.95f*_sitl->wind_dir_z_active) + (0.05f*_sitl->wind_dir_z); |
|
|
|
// pass wind into simulators using different wind types via param SIM_WIND_T*. |
|
switch (_sitl->wind_type) { |
|
case SITL::SITL::WIND_TYPE_SQRT: |
|
if (altitude < _sitl->wind_type_alt) { |
|
wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0)); |
|
} |
|
break; |
|
|
|
case SITL::SITL::WIND_TYPE_COEF: |
|
wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef; |
|
break; |
|
|
|
case SITL::SITL::WIND_TYPE_NO_LIMIT: |
|
default: |
|
break; |
|
} |
|
|
|
// never allow negative wind velocity |
|
wind_speed = MAX(wind_speed, 0); |
|
} |
|
|
|
input.wind.speed = wind_speed; |
|
input.wind.direction = wind_direction; |
|
input.wind.turbulence = _sitl?_sitl->wind_turbulance:0; |
|
input.wind.dir_z = wind_dir_z; |
|
|
|
for (i=0; i<SITL_NUM_CHANNELS; i++) { |
|
if (pwm_output[i] == 0xFFFF) { |
|
input.servos[i] = 0; |
|
} else { |
|
input.servos[i] = pwm_output[i]; |
|
} |
|
} |
|
|
|
float engine_mul = _sitl?_sitl->engine_mul.get():1; |
|
uint8_t engine_fail = _sitl?_sitl->engine_fail.get():0; |
|
bool motors_on = false; |
|
|
|
if (engine_fail >= ARRAY_SIZE(input.servos)) { |
|
engine_fail = 0; |
|
} |
|
// apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter |
|
if (_vehicle != APMrover2) { |
|
input.servos[engine_fail] = ((input.servos[engine_fail]-1000) * engine_mul) + 1000; |
|
} else { |
|
input.servos[engine_fail] = static_cast<uint16_t>(((input.servos[engine_fail] - 1500) * engine_mul) + 1500); |
|
} |
|
|
|
if (_vehicle == ArduPlane) { |
|
motors_on = ((input.servos[2] - 1000) / 1000.0f) > 0; |
|
} else if (_vehicle == APMrover2) { |
|
input.servos[2] = static_cast<uint16_t>(constrain_int16(input.servos[2], 1000, 2000)); |
|
input.servos[0] = static_cast<uint16_t>(constrain_int16(input.servos[0], 1000, 2000)); |
|
motors_on = !is_zero(((input.servos[2] - 1500) / 500.0f)); |
|
} else { |
|
motors_on = false; |
|
// run checks on each motor |
|
for (i=0; i<4; i++) { |
|
// check motors do not exceed their limits |
|
if (input.servos[i] > 2000) input.servos[i] = 2000; |
|
if (input.servos[i] < 1000) input.servos[i] = 1000; |
|
// update motor_on flag |
|
if ((input.servos[i]-1000)/1000.0f > 0) { |
|
motors_on = true; |
|
} |
|
} |
|
} |
|
if (_sitl) { |
|
_sitl->motors_on = motors_on; |
|
} |
|
|
|
float voltage = 0; |
|
_current = 0; |
|
|
|
if (_sitl != nullptr) { |
|
if (_sitl->state.battery_voltage <= 0) { |
|
if (_vehicle == ArduSub) { |
|
voltage = _sitl->batt_voltage; |
|
for (i = 0; i < 6; i++) { |
|
float pwm = input.servos[i]; |
|
//printf("i: %d, pwm: %.2f\n", i, pwm); |
|
float fraction = fabsf((pwm - 1500) / 500.0f); |
|
|
|
voltage -= fraction * 0.5f; |
|
|
|
float draw = fraction * 15; |
|
_current += draw; |
|
} |
|
} else { |
|
// simulate simple battery setup |
|
float throttle; |
|
if (_vehicle == APMrover2) { |
|
throttle = motors_on ? (input.servos[2] - 1500) / 500.0f : 0; |
|
} else { |
|
throttle = motors_on ? (input.servos[2] - 1000) / 1000.0f : 0; |
|
} |
|
// lose 0.7V at full throttle |
|
voltage = _sitl->batt_voltage - 0.7f*fabsf(throttle); |
|
|
|
// assume 50A at full throttle |
|
_current = 50.0f * fabsf(throttle); |
|
} |
|
} else { |
|
// FDM provides voltage and current |
|
voltage = _sitl->state.battery_voltage; |
|
_current = _sitl->state.battery_current; |
|
} |
|
} |
|
|
|
// assume 3DR power brick |
|
voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024; |
|
current_pin_value = ((_current / 17.0f) / 5.0f) * 1024; |
|
// fake battery2 as just a 25% gain on the first one |
|
voltage2_pin_value = ((voltage * 0.25f / 10.1f) / 5.0f) * 1024; |
|
current2_pin_value = ((_current * 0.25f / 17.0f) / 5.0f) * 1024; |
|
} |
|
|
|
void SITL_State::init(int argc, char * const argv[]) |
|
{ |
|
pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500; |
|
pwm_input[4] = pwm_input[7] = 1800; |
|
pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000; |
|
|
|
_scheduler = Scheduler::from(hal.scheduler); |
|
_parse_command_line(argc, argv); |
|
} |
|
|
|
/* |
|
set height above the ground in meters |
|
*/ |
|
void SITL_State::set_height_agl(void) |
|
{ |
|
static float home_alt = -1; |
|
|
|
if (!_sitl) { |
|
// in example program |
|
return; |
|
} |
|
|
|
if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) { |
|
// remember home altitude as first non-zero altitude |
|
home_alt = _sitl->state.altitude; |
|
} |
|
|
|
#if AP_TERRAIN_AVAILABLE |
|
if (_terrain != nullptr && |
|
_sitl != nullptr && |
|
_sitl->terrain_enable) { |
|
// get height above terrain from AP_Terrain. This assumes |
|
// AP_Terrain is working |
|
float terrain_height_amsl; |
|
struct Location location; |
|
location.lat = _sitl->state.latitude*1.0e7; |
|
location.lng = _sitl->state.longitude*1.0e7; |
|
|
|
if (_terrain->height_amsl(location, terrain_height_amsl, false)) { |
|
_sitl->height_agl = _sitl->state.altitude - terrain_height_amsl; |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (_sitl != nullptr) { |
|
// fall back to flat earth model |
|
_sitl->height_agl = _sitl->state.altitude - home_alt; |
|
} |
|
} |
|
|
|
#endif
|
|
|