You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
325 lines
9.9 KiB
325 lines
9.9 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
static byte navigate() |
|
{ |
|
if(next_WP.lat == 0){ |
|
return 0; |
|
} |
|
|
|
// waypoint distance from plane |
|
// ---------------------------- |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
|
|
if (wp_distance < 0){ |
|
//gcs_send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0")); |
|
//Serial.println(wp_distance,DEC); |
|
//print_current_waypoints(); |
|
return 0; |
|
} |
|
|
|
// target_bearing is where we should be heading |
|
// -------------------------------------------- |
|
target_bearing = get_bearing(¤t_loc, &next_WP); |
|
return 1; |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
int32_t temp = target_bearing - original_target_bearing; |
|
temp = wrap_180(temp); |
|
return (abs(temp) > 10000); //we pased the waypoint by 10 ° |
|
} |
|
|
|
// ------------------------------ |
|
|
|
// long_error, lat_error |
|
static void calc_location_error(struct Location *next_loc) |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
pitch_max = 22° (2200) |
|
*/ |
|
|
|
// X ROLL |
|
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST |
|
|
|
// Y PITCH |
|
lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH |
|
} |
|
|
|
#define NAV_ERR_MAX 800 |
|
static void calc_loiter(int x_error, int y_error) |
|
{ |
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
|
|
int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); |
|
int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); |
|
|
|
// find the rates: |
|
float temp = radians((float)g_gps->ground_course/100.0); |
|
|
|
#ifdef OPTFLOW_ENABLED |
|
// calc the cos of the error to tell how fast we are moving towards the target in cm |
|
if(g.optflow_enabled && current_loc.alt < 500 && g_gps->ground_speed < 150){ |
|
x_actual_speed = optflow.vlon * 10; |
|
y_actual_speed = optflow.vlat * 10; |
|
}else{ |
|
x_actual_speed = (float)g_gps->ground_speed * sin(temp); |
|
y_actual_speed = (float)g_gps->ground_speed * cos(temp); |
|
} |
|
#else |
|
x_actual_speed = (float)g_gps->ground_speed * sin(temp); |
|
y_actual_speed = (float)g_gps->ground_speed * cos(temp); |
|
#endif |
|
|
|
y_rate_error = y_target_speed - y_actual_speed; // 413 |
|
y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum |
|
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav); |
|
nav_lat = constrain(nav_lat, -3500, 3500); |
|
|
|
x_rate_error = x_target_speed - x_actual_speed; |
|
x_rate_error = constrain(x_rate_error, -250, 250); |
|
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav); |
|
nav_lon = constrain(nav_lon, -3500, 3500); |
|
} |
|
|
|
static void calc_loiter2(int x_error, int y_error) |
|
{ |
|
static int last_x_error = 0; |
|
static int last_y_error = 0; |
|
|
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
|
|
int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); |
|
int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); |
|
|
|
// find the rates: |
|
x_actual_speed = (float)(last_x_error - x_error)/dTnav; |
|
y_actual_speed = (float)(last_y_error - y_error)/dTnav; |
|
|
|
// save speeds |
|
last_x_error = x_error; |
|
last_y_error = y_error; |
|
|
|
y_rate_error = y_target_speed - y_actual_speed; // 413 |
|
y_rate_error = constrain(y_rate_error, -250, 250); // added a rate error limit to keep pitching down to a minimum |
|
nav_lat = g.pi_nav_lat.get_pi(y_rate_error, dTnav); |
|
nav_lat = constrain(nav_lat, -3500, 3500); |
|
|
|
x_rate_error = x_target_speed - x_actual_speed; |
|
x_rate_error = constrain(x_rate_error, -250, 250); |
|
nav_lon = g.pi_nav_lon.get_pi(x_rate_error, dTnav); |
|
nav_lon = constrain(nav_lon, -3500, 3500); |
|
} |
|
|
|
// nav_roll, nav_pitch |
|
static void calc_loiter_pitch_roll() |
|
{ |
|
|
|
//float temp = radians((float)(9000 - (dcm.yaw_sensor))/100.0); |
|
//float _cos_yaw_x = cos(temp); |
|
//float _sin_yaw_y = sin(temp); |
|
|
|
//Serial.printf("ys %ld, cx %1.4f, _cx %1.4f | sy %1.4f, _sy %1.4f\n", dcm.yaw_sensor, cos_yaw_x, _cos_yaw_x, sin_yaw_y, _sin_yaw_y); |
|
|
|
// rotate the vector |
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; |
|
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; |
|
|
|
// flip pitch because forward is negative |
|
nav_pitch = -nav_pitch; |
|
} |
|
|
|
static void calc_nav_rate(int max_speed) |
|
{ |
|
/* |
|
|< WP Radius |
|
0 1 2 3 4 5 6 7 8m |
|
...|...|...|...|...|...|...|...| |
|
100 | 200 300 400cm/s |
|
| +|+ |
|
|< we should slow to 1.5 m/s as we hit the target |
|
*/ |
|
|
|
// max_speed is default 400 or 4m/s |
|
// (wp_distance * 50) = 1/2 of the distance converted to speed |
|
// wp_distance is alwats in m/s and not cm/s - I know it's stupiod that way |
|
// for example 4m from target = 200cm/s speed |
|
// we choose the lowest speed based on disance |
|
max_speed = min(max_speed, (wp_distance * 50)); |
|
|
|
// limit the ramp up of the speed |
|
// waypoint_speed_gov is reset to 0 at each new WP command |
|
if(waypoint_speed_gov < max_speed){ |
|
waypoint_speed_gov += (int)(100.0 * dTnav); // increase at 1.5/ms |
|
|
|
// go at least 50cm/s |
|
max_speed = max(50, waypoint_speed_gov); |
|
// limit with governer |
|
max_speed = min(max_speed, waypoint_speed_gov); |
|
} |
|
|
|
// XXX target_angle should be the original desired target angle! |
|
float temp = radians((original_target_bearing - g_gps->ground_course)/100.0); |
|
|
|
// heading laterally, we want a zero speed here |
|
x_actual_speed = -sin(temp) * (float)g_gps->ground_speed; |
|
x_rate_error = -x_actual_speed; |
|
x_rate_error = constrain(x_rate_error, -800, 800); |
|
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500); |
|
|
|
// heading towards target |
|
y_actual_speed = cos(temp) * (float)g_gps->ground_speed; |
|
y_rate_error = max_speed - y_actual_speed; // 413 |
|
y_rate_error = constrain(y_rate_error, -800, 800); // added a rate error limit to keep pitching down to a minimum |
|
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500); |
|
// 400cm/s * 3 = 1200 or 12 deg pitch |
|
// 800cm/s * 3 = 2400 or 24 deg pitch MAX |
|
|
|
|
|
// nav_lat and nav_lon will be rotated to the angle of the quad in calc_nav_pitch_roll() |
|
|
|
/*Serial.printf("max_speed: %d, xspeed: %d, yspeed: %d, x_re: %d, y_re: %d, nav_lon: %ld, nav_lat: %ld ", |
|
max_speed, |
|
x_actual_speed, |
|
y_actual_speed, |
|
x_rate_error, |
|
y_rate_error, |
|
nav_lon, |
|
nav_lat);*/ |
|
} |
|
|
|
// nav_roll, nav_pitch |
|
static void calc_nav_pitch_roll() |
|
{ |
|
float temp = radians((float)(9000 - (dcm.yaw_sensor - original_target_bearing))/100.0); |
|
float _cos_yaw_x = cos(temp); |
|
float _sin_yaw_y = sin(temp); |
|
|
|
// rotate the vector |
|
nav_roll = (float)nav_lon * _sin_yaw_y - (float)nav_lat * _cos_yaw_x; |
|
nav_pitch = (float)nav_lon * _cos_yaw_x + (float)nav_lat * _sin_yaw_y; |
|
|
|
// flip pitch because forward is negative |
|
nav_pitch = -nav_pitch; |
|
|
|
/*Serial.printf("_cos_yaw_x:%1.4f, _sin_yaw_y:%1.4f, nav_roll:%ld, nav_pitch:%ld\n", |
|
_cos_yaw_x, |
|
_sin_yaw_y, |
|
nav_roll, |
|
nav_pitch);*/ |
|
} |
|
|
|
static int32_t get_altitude_error() |
|
{ |
|
return next_WP.alt - current_loc.alt; |
|
} |
|
|
|
static int get_loiter_angle() |
|
{ |
|
float power; |
|
int angle; |
|
|
|
if(wp_distance <= g.loiter_radius){ |
|
power = float(wp_distance) / float(g.loiter_radius); |
|
power = constrain(power, 0.5, 1); |
|
angle = 90.0 * (2.0 + power); |
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ |
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); |
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); |
|
angle = power * 90; |
|
} |
|
|
|
return angle; |
|
} |
|
|
|
static int32_t wrap_360(int32_t error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static int32_t wrap_180(int32_t error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
/* |
|
static int32_t get_crosstrack_correction(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following |
|
|
|
// Meters we are off track line |
|
float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; |
|
|
|
// take meters * 100 to get adjustment to nav_bearing |
|
int32_t _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100; |
|
|
|
// constrain answer to 30° to avoid overshoot |
|
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); |
|
} |
|
return 0; |
|
} |
|
*/ |
|
/* |
|
static int32_t cross_track_test() |
|
{ |
|
int32_t temp = wrap_180(target_bearing - crosstrack_bearing); |
|
return abs(temp); |
|
} |
|
*/ |
|
/* |
|
static void reset_crosstrack() |
|
{ |
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following |
|
} |
|
*/ |
|
/*static int32_t get_altitude_above_home(void) |
|
{ |
|
// This is the altitude above the home location |
|
// The GPS gives us altitude at Sea Level |
|
// if you slope soar, you should see a negative number sometimes |
|
// ------------------------------------------------------------- |
|
return current_loc.alt - home.alt; |
|
} |
|
*/ |
|
// distance is returned in meters |
|
static int32_t get_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
//if(loc1->lat == 0 || loc1->lng == 0) |
|
// return -1; |
|
//if(loc2->lat == 0 || loc2->lng == 0) |
|
// return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
/* |
|
static int32_t get_alt_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
return abs(loc1->alt - loc2->alt); |
|
} |
|
*/ |
|
static int32_t get_bearing(struct Location *loc1, struct Location *loc2) |
|
{ |
|
int32_t off_x = loc2->lng - loc1->lng; |
|
int32_t off_y = (loc2->lat - loc1->lat) * scaleLongUp; |
|
int32_t bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
}
|
|
|