You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
367 lines
13 KiB
367 lines
13 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsTri.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include "AP_MotorsTri.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_MotorsTri::var_info[] = { |
|
// variables from parent vehicle |
|
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), |
|
|
|
// parameters 1 ~ 29 were reserved for tradheli |
|
// parameters 30 ~ 39 reserved for tricopter |
|
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files) |
|
|
|
// @Param: YAW_SV_REV |
|
// @DisplayName: Yaw Servo Reverse |
|
// @Description: Yaw servo reversing. Set to 1 for normal (forward) operation. Set to -1 to reverse this channel. |
|
// @Values: -1:Reversed,1:Normal |
|
// @User: Standard |
|
AP_GROUPINFO("YAW_SV_REV", 31, AP_MotorsTri, _yaw_servo_reverse, 1), |
|
|
|
// @Param: YAW_SV_TRIM |
|
// @DisplayName: Yaw Servo Trim/Center |
|
// @Description: Trim or center position of yaw servo |
|
// @Range: 1250 1750 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("YAW_SV_TRIM", 32, AP_MotorsTri, _yaw_servo_trim, 1500), |
|
|
|
// @Param: YAW_SV_MIN |
|
// @DisplayName: Yaw Servo Min Position |
|
// @Description: Minimum angle limit of yaw servo |
|
// @Range: 1000 1400 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("YAW_SV_MIN", 33, AP_MotorsTri, _yaw_servo_min, 1250), |
|
|
|
// @Param: YAW_SV_MAX |
|
// @DisplayName: Yaw Servo Max Position |
|
// @Description: Maximum angle limit of yaw servo |
|
// @Range: 1600 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("YAW_SV_MAX", 34, AP_MotorsTri, _yaw_servo_max, 1750), |
|
|
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// init |
|
void AP_MotorsTri::Init() |
|
{ |
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
set_update_rate(_speed_hz); |
|
|
|
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types |
|
motor_enabled[AP_MOTORS_MOT_1] = true; |
|
motor_enabled[AP_MOTORS_MOT_2] = true; |
|
motor_enabled[AP_MOTORS_MOT_4] = true; |
|
|
|
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) |
|
RC_Channel_aux::disable_aux_channel(AP_MOTORS_CH_TRI_YAW); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsTri::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
uint32_t mask = |
|
1U << AP_MOTORS_MOT_1 | |
|
1U << AP_MOTORS_MOT_2 | |
|
1U << AP_MOTORS_MOT_4; |
|
hal.rcout->set_freq(mask, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsTri::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(AP_MOTORS_MOT_1); |
|
hal.rcout->enable_ch(AP_MOTORS_MOT_2); |
|
hal.rcout->enable_ch(AP_MOTORS_MOT_4); |
|
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW); |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsTri::output_min() |
|
{ |
|
// set lower limit flag |
|
limit.throttle_lower = true; |
|
|
|
// send minimum value to each motor |
|
hal.rcout->cork(); |
|
hal.rcout->write(AP_MOTORS_MOT_1, _throttle_radio_min); |
|
hal.rcout->write(AP_MOTORS_MOT_2, _throttle_radio_min); |
|
hal.rcout->write(AP_MOTORS_MOT_4, _throttle_radio_min); |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim); |
|
hal.rcout->push(); |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsTri::get_motor_mask() |
|
{ |
|
// tri copter uses channels 1,2,4 and 7 |
|
return (1U << AP_MOTORS_MOT_1) | |
|
(1U << AP_MOTORS_MOT_2) | |
|
(1U << AP_MOTORS_MOT_4) | |
|
(1U << AP_MOTORS_CH_TRI_YAW); |
|
} |
|
|
|
void AP_MotorsTri::output_armed_not_stabilizing() |
|
{ |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t out_min = _throttle_radio_min + _min_throttle; |
|
int16_t out_max = _throttle_radio_max; |
|
int16_t motor_out[AP_MOTORS_MOT_4+1]; |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
int16_t thr_in_min = rel_pwm_to_thr_range(_spin_when_armed_ramped); |
|
if (_throttle_control_input <= thr_in_min) { |
|
_throttle_control_input = thr_in_min; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
if (_throttle_control_input >= _hover_out) { |
|
_throttle_control_input = _hover_out; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
throttle_radio_output = calc_throttle_radio_output(); |
|
|
|
motor_out[AP_MOTORS_MOT_1] = throttle_radio_output; |
|
motor_out[AP_MOTORS_MOT_2] = throttle_radio_output; |
|
motor_out[AP_MOTORS_MOT_4] = throttle_radio_output; |
|
|
|
if(throttle_radio_output >= out_min) { |
|
// adjust for thrust curve and voltage scaling |
|
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max); |
|
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max); |
|
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max); |
|
} |
|
|
|
hal.rcout->cork(); |
|
|
|
// send output to each motor |
|
hal.rcout->write(AP_MOTORS_MOT_1, motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(AP_MOTORS_MOT_2, motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(AP_MOTORS_MOT_4, motor_out[AP_MOTORS_MOT_4]); |
|
|
|
// send centering signal to yaw servo |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _yaw_servo_trim); |
|
|
|
hal.rcout->push(); |
|
} |
|
|
|
// sends commands to the motors |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
void AP_MotorsTri::output_armed_stabilizing() |
|
{ |
|
int16_t roll_pwm; // roll pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 |
|
int16_t pitch_pwm; // pitch pwm value, initially calculated by calc_roll_pwm() but may be modified after, +/- 400 |
|
int16_t throttle_radio_output; // total throttle pwm value, summed onto throttle channel minimum, typically ~1100-1900 |
|
int16_t yaw_radio_output; // final yaw pwm value sent to motors, typically ~1100-1900 |
|
int16_t out_min = _throttle_radio_min + _min_throttle; |
|
int16_t out_max = _throttle_radio_max; |
|
int16_t motor_out[AP_MOTORS_MOT_4+1]; |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// Throttle is 0 to 1000 only |
|
int16_t thr_in_min = rel_pwm_to_thr_range(_min_throttle); |
|
if (_throttle_control_input <= thr_in_min) { |
|
_throttle_control_input = thr_in_min; |
|
limit.throttle_lower = true; |
|
} |
|
if (_throttle_control_input >= _max_throttle) { |
|
_throttle_control_input = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// tricopters limit throttle to 80% |
|
// To-Do: implement improved stability patch and remove this limit |
|
if (_throttle_control_input > 800) { |
|
_throttle_control_input = 800; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
roll_pwm = calc_roll_pwm(); |
|
pitch_pwm = calc_pitch_pwm(); |
|
throttle_radio_output = calc_throttle_radio_output(); |
|
yaw_radio_output = calc_yaw_radio_output(); |
|
|
|
// if we are not sending a throttle output, we cut the motors |
|
if( is_zero(_throttle_control_input) ) { |
|
// range check spin_when_armed |
|
if (_spin_when_armed_ramped < 0) { |
|
_spin_when_armed_ramped = 0; |
|
} |
|
if (_spin_when_armed_ramped > _min_throttle) { |
|
_spin_when_armed_ramped = _min_throttle; |
|
} |
|
motor_out[AP_MOTORS_MOT_1] = _throttle_radio_min + _spin_when_armed_ramped; |
|
motor_out[AP_MOTORS_MOT_2] = _throttle_radio_min + _spin_when_armed_ramped; |
|
motor_out[AP_MOTORS_MOT_4] = _throttle_radio_min + _spin_when_armed_ramped; |
|
|
|
}else{ |
|
int16_t roll_out = (float)(roll_pwm * 0.866f); |
|
int16_t pitch_out = pitch_pwm / 2; |
|
|
|
// check if throttle is below limit |
|
if (_throttle_control_input <= _min_throttle) { |
|
limit.throttle_lower = true; |
|
_throttle_control_input = _min_throttle; |
|
throttle_radio_output = calc_throttle_radio_output(); |
|
} |
|
|
|
// TODO: set limits.roll_pitch and limits.yaw |
|
|
|
//left front |
|
motor_out[AP_MOTORS_MOT_2] = throttle_radio_output + roll_out + pitch_out; |
|
//right front |
|
motor_out[AP_MOTORS_MOT_1] = throttle_radio_output - roll_out + pitch_out; |
|
// rear |
|
motor_out[AP_MOTORS_MOT_4] = throttle_radio_output - pitch_pwm; |
|
|
|
// Tridge's stability patch |
|
if(motor_out[AP_MOTORS_MOT_1] > out_max) { |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max); |
|
motor_out[AP_MOTORS_MOT_1] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_2] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max); |
|
motor_out[AP_MOTORS_MOT_2] = out_max; |
|
} |
|
|
|
if(motor_out[AP_MOTORS_MOT_4] > out_max) { |
|
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max); |
|
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max); |
|
motor_out[AP_MOTORS_MOT_4] = out_max; |
|
} |
|
|
|
// adjust for thrust curve and voltage scaling |
|
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max); |
|
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max); |
|
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max); |
|
|
|
// ensure motors don't drop below a minimum value and stop |
|
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min); |
|
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min); |
|
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min); |
|
} |
|
|
|
hal.rcout->cork(); |
|
|
|
// send output to each motor |
|
hal.rcout->write(AP_MOTORS_MOT_1, motor_out[AP_MOTORS_MOT_1]); |
|
hal.rcout->write(AP_MOTORS_MOT_2, motor_out[AP_MOTORS_MOT_2]); |
|
hal.rcout->write(AP_MOTORS_MOT_4, motor_out[AP_MOTORS_MOT_4]); |
|
|
|
// send out to yaw command to tail servo |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, yaw_radio_output); |
|
|
|
hal.rcout->push(); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsTri::output_disarmed() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// output to motors and servos |
|
switch (motor_seq) { |
|
case 1: |
|
// front right motor |
|
hal.rcout->write(AP_MOTORS_MOT_1, pwm); |
|
break; |
|
case 2: |
|
// back motor |
|
hal.rcout->write(AP_MOTORS_MOT_4, pwm); |
|
break; |
|
case 3: |
|
// back servo |
|
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, pwm); |
|
break; |
|
case 4: |
|
// front left motor |
|
hal.rcout->write(AP_MOTORS_MOT_2, pwm); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
} |
|
|
|
// calc_yaw_radio_output - calculate final radio output for yaw channel |
|
int16_t AP_MotorsTri::calc_yaw_radio_output() |
|
{ |
|
int16_t ret; |
|
|
|
if (_yaw_servo_reverse < 0) { |
|
if (_yaw_control_input >= 0){ |
|
ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min))); |
|
} else { |
|
ret = (_yaw_servo_trim - (_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim))); |
|
} |
|
} else { |
|
if (_yaw_control_input >= 0){ |
|
ret = ((_yaw_control_input/4500 * (_yaw_servo_max - _yaw_servo_trim)) + _yaw_servo_trim); |
|
} else { |
|
ret = ((_yaw_control_input/4500 * (_yaw_servo_trim - _yaw_servo_min)) + _yaw_servo_trim); |
|
} |
|
} |
|
|
|
return ret; |
|
}
|
|
|