You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
448 lines
12 KiB
448 lines
12 KiB
#include <AP_HAL/AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
|
|
#include "AP_HAL_PX4.h" |
|
#include "Scheduler.h" |
|
|
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <sched.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
#include <drivers/drv_hrt.h> |
|
#include <nuttx/arch.h> |
|
#include <systemlib/systemlib.h> |
|
#include <pthread.h> |
|
#include <poll.h> |
|
|
|
#include "UARTDriver.h" |
|
#include "AnalogIn.h" |
|
#include "Storage.h" |
|
#include "RCOutput.h" |
|
#include "RCInput.h" |
|
|
|
#include <AP_Scheduler/AP_Scheduler.h> |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
|
|
using namespace PX4; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
extern bool _px4_thread_should_exit; |
|
|
|
PX4Scheduler::PX4Scheduler() : |
|
_perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")), |
|
_perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")), |
|
_perf_storage_timer(perf_alloc(PC_ELAPSED, "APM_storage_timers")), |
|
_perf_delay(perf_alloc(PC_ELAPSED, "APM_delay")) |
|
{} |
|
|
|
void PX4Scheduler::init() |
|
{ |
|
_main_task_pid = getpid(); |
|
|
|
// setup the timer thread - this will call tasks at 1kHz |
|
pthread_attr_t thread_attr; |
|
struct sched_param param; |
|
|
|
pthread_attr_init(&thread_attr); |
|
pthread_attr_setstacksize(&thread_attr, 2048); |
|
|
|
param.sched_priority = APM_TIMER_PRIORITY; |
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m); |
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); |
|
|
|
pthread_create(&_timer_thread_ctx, &thread_attr, &PX4Scheduler::_timer_thread, this); |
|
|
|
// the UART thread runs at a medium priority |
|
pthread_attr_init(&thread_attr); |
|
pthread_attr_setstacksize(&thread_attr, 2048); |
|
|
|
param.sched_priority = APM_UART_PRIORITY; |
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m); |
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); |
|
|
|
pthread_create(&_uart_thread_ctx, &thread_attr, &PX4Scheduler::_uart_thread, this); |
|
|
|
// the IO thread runs at lower priority |
|
pthread_attr_init(&thread_attr); |
|
pthread_attr_setstacksize(&thread_attr, 2048); |
|
|
|
param.sched_priority = APM_IO_PRIORITY; |
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m); |
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); |
|
|
|
pthread_create(&_io_thread_ctx, &thread_attr, &PX4Scheduler::_io_thread, this); |
|
|
|
// the storage thread runs at just above IO priority |
|
pthread_attr_init(&thread_attr); |
|
pthread_attr_setstacksize(&thread_attr, 1024); |
|
|
|
param.sched_priority = APM_STORAGE_PRIORITY; |
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m); |
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); |
|
|
|
pthread_create(&_storage_thread_ctx, &thread_attr, &PX4Scheduler::_storage_thread, this); |
|
} |
|
|
|
/** |
|
delay for a specified number of microseconds using a semaphore wait |
|
*/ |
|
void PX4Scheduler::delay_microseconds_semaphore(uint16_t usec) |
|
{ |
|
sem_t wait_semaphore; |
|
struct hrt_call wait_call; |
|
sem_init(&wait_semaphore, 0, 0); |
|
memset(&wait_call, 0, sizeof(wait_call)); |
|
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore); |
|
sem_wait(&wait_semaphore); |
|
} |
|
|
|
void PX4Scheduler::delay_microseconds(uint16_t usec) |
|
{ |
|
perf_begin(_perf_delay); |
|
delay_microseconds_semaphore(usec); |
|
perf_end(_perf_delay); |
|
} |
|
|
|
/* |
|
wrapper around sem_post that boosts main thread priority |
|
*/ |
|
static void sem_post_boost(sem_t *sem) |
|
{ |
|
hal_px4_set_priority(APM_MAIN_PRIORITY_BOOST); |
|
sem_post(sem); |
|
} |
|
|
|
/* |
|
return the main thread to normal priority |
|
*/ |
|
static void set_normal_priority(void *sem) |
|
{ |
|
hal_px4_set_priority(APM_MAIN_PRIORITY); |
|
} |
|
|
|
/* |
|
a variant of delay_microseconds that boosts priority to |
|
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC |
|
microseconds when the time completes. This significantly improves |
|
the regularity of timing of the main loop as it takes |
|
*/ |
|
void PX4Scheduler::delay_microseconds_boost(uint16_t usec) |
|
{ |
|
sem_t wait_semaphore; |
|
static struct hrt_call wait_call; |
|
sem_init(&wait_semaphore, 0, 0); |
|
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post_boost, &wait_semaphore); |
|
sem_wait(&wait_semaphore); |
|
hrt_call_after(&wait_call, APM_MAIN_PRIORITY_BOOST_USEC, (hrt_callout)set_normal_priority, nullptr); |
|
} |
|
|
|
void PX4Scheduler::delay(uint16_t ms) |
|
{ |
|
perf_begin(_perf_delay); |
|
uint64_t start = AP_HAL::micros64(); |
|
|
|
while ((AP_HAL::micros64() - start)/1000 < ms && |
|
!_px4_thread_should_exit) { |
|
delay_microseconds_semaphore(1000); |
|
if (in_main_thread() && _min_delay_cb_ms <= ms) { |
|
call_delay_cb(); |
|
} |
|
} |
|
perf_end(_perf_delay); |
|
if (_px4_thread_should_exit) { |
|
exit(1); |
|
} |
|
} |
|
|
|
void PX4Scheduler::register_timer_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) { |
|
_timer_proc[_num_timer_procs] = proc; |
|
_num_timer_procs++; |
|
} else { |
|
hal.console->printf("Out of timer processes\n"); |
|
} |
|
} |
|
|
|
void PX4Scheduler::register_io_process(AP_HAL::MemberProc proc) |
|
{ |
|
for (uint8_t i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i] == proc) { |
|
return; |
|
} |
|
} |
|
|
|
if (_num_io_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) { |
|
_io_proc[_num_io_procs] = proc; |
|
_num_io_procs++; |
|
} else { |
|
hal.console->printf("Out of IO processes\n"); |
|
} |
|
} |
|
|
|
void PX4Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) |
|
{ |
|
_failsafe = failsafe; |
|
} |
|
|
|
void PX4Scheduler::reboot(bool hold_in_bootloader) |
|
{ |
|
// disarm motors to ensure they are off during a bootloader upload |
|
hal.rcout->force_safety_on(); |
|
hal.rcout->force_safety_no_wait(); |
|
|
|
// delay to ensure the async force_saftey operation completes |
|
delay(500); |
|
|
|
px4_systemreset(hold_in_bootloader); |
|
} |
|
|
|
void PX4Scheduler::_run_timers() |
|
{ |
|
if (_in_timer_proc) { |
|
return; |
|
} |
|
_in_timer_proc = true; |
|
|
|
// now call the timer based drivers |
|
for (int i = 0; i < _num_timer_procs; i++) { |
|
if (_timer_proc[i]) { |
|
_timer_proc[i](); |
|
} |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != nullptr) { |
|
_failsafe(); |
|
} |
|
|
|
// process analog input |
|
((PX4AnalogIn *)hal.analogin)->_timer_tick(); |
|
|
|
_in_timer_proc = false; |
|
} |
|
|
|
extern bool px4_ran_overtime; |
|
|
|
void *PX4Scheduler::_timer_thread(void *arg) |
|
{ |
|
PX4Scheduler *sched = (PX4Scheduler *)arg; |
|
uint32_t last_ran_overtime = 0; |
|
|
|
pthread_setname_np(pthread_self(), "apm_timer"); |
|
|
|
while (!sched->_hal_initialized) { |
|
poll(nullptr, 0, 1); |
|
} |
|
while (!_px4_thread_should_exit) { |
|
sched->delay_microseconds_semaphore(1000); |
|
|
|
// run registered timers |
|
perf_begin(sched->_perf_timers); |
|
sched->_run_timers(); |
|
perf_end(sched->_perf_timers); |
|
|
|
// process any pending RC output requests |
|
hal.rcout->timer_tick(); |
|
|
|
// process any pending RC input requests |
|
((PX4RCInput *)hal.rcin)->_timer_tick(); |
|
|
|
if (px4_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) { |
|
last_ran_overtime = AP_HAL::millis(); |
|
#if 0 |
|
printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); |
|
hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task); |
|
#endif |
|
} |
|
} |
|
return nullptr; |
|
} |
|
|
|
void PX4Scheduler::_run_io(void) |
|
{ |
|
if (_in_io_proc) { |
|
return; |
|
} |
|
_in_io_proc = true; |
|
|
|
// now call the IO based drivers |
|
for (int i = 0; i < _num_io_procs; i++) { |
|
if (_io_proc[i]) { |
|
_io_proc[i](); |
|
} |
|
} |
|
|
|
_in_io_proc = false; |
|
} |
|
|
|
void *PX4Scheduler::_uart_thread(void *arg) |
|
{ |
|
PX4Scheduler *sched = (PX4Scheduler *)arg; |
|
|
|
pthread_setname_np(pthread_self(), "apm_uart"); |
|
|
|
while (!sched->_hal_initialized) { |
|
poll(nullptr, 0, 1); |
|
} |
|
while (!_px4_thread_should_exit) { |
|
sched->delay_microseconds_semaphore(1000); |
|
|
|
// process any pending serial bytes |
|
hal.uartA->_timer_tick(); |
|
hal.uartB->_timer_tick(); |
|
hal.uartC->_timer_tick(); |
|
hal.uartD->_timer_tick(); |
|
hal.uartE->_timer_tick(); |
|
hal.uartF->_timer_tick(); |
|
} |
|
return nullptr; |
|
} |
|
|
|
void *PX4Scheduler::_io_thread(void *arg) |
|
{ |
|
PX4Scheduler *sched = (PX4Scheduler *)arg; |
|
|
|
pthread_setname_np(pthread_self(), "apm_io"); |
|
|
|
while (!sched->_hal_initialized) { |
|
poll(nullptr, 0, 1); |
|
} |
|
while (!_px4_thread_should_exit) { |
|
sched->delay_microseconds_semaphore(1000); |
|
|
|
// run registered IO processes |
|
perf_begin(sched->_perf_io_timers); |
|
sched->_run_io(); |
|
perf_end(sched->_perf_io_timers); |
|
} |
|
return nullptr; |
|
} |
|
|
|
void *PX4Scheduler::_storage_thread(void *arg) |
|
{ |
|
PX4Scheduler *sched = (PX4Scheduler *)arg; |
|
|
|
pthread_setname_np(pthread_self(), "apm_storage"); |
|
|
|
while (!sched->_hal_initialized) { |
|
poll(nullptr, 0, 1); |
|
} |
|
while (!_px4_thread_should_exit) { |
|
sched->delay_microseconds_semaphore(10000); |
|
|
|
// process any pending storage writes |
|
perf_begin(sched->_perf_storage_timer); |
|
hal.storage->_timer_tick(); |
|
perf_end(sched->_perf_storage_timer); |
|
} |
|
return nullptr; |
|
} |
|
|
|
bool PX4Scheduler::in_main_thread() const |
|
{ |
|
return getpid() == _main_task_pid; |
|
} |
|
|
|
void PX4Scheduler::system_initialized() |
|
{ |
|
if (_initialized) { |
|
AP_HAL::panic("PANIC: scheduler::system_initialized called" |
|
"more than once"); |
|
} |
|
_initialized = true; |
|
} |
|
|
|
|
|
/* |
|
disable interrupts and return a context that can be used to |
|
restore the interrupt state. This can be used to protect |
|
critical regions |
|
*/ |
|
void *PX4Scheduler::disable_interrupts_save(void) |
|
{ |
|
return (void *)(uintptr_t)irqsave(); |
|
} |
|
|
|
/* |
|
restore interrupt state from disable_interrupts_save() |
|
*/ |
|
void PX4Scheduler::restore_interrupts(void *state) |
|
{ |
|
irqrestore((irqstate_t)(uintptr_t)state); |
|
} |
|
|
|
/* |
|
trampoline for thread create |
|
*/ |
|
void *PX4Scheduler::thread_create_trampoline(void *ctx) |
|
{ |
|
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx; |
|
(*t)(); |
|
free(t); |
|
return nullptr; |
|
} |
|
|
|
/* |
|
create a new thread |
|
*/ |
|
bool PX4Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority) |
|
{ |
|
// take a copy of the MemberProc, it is freed after thread exits |
|
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc)); |
|
if (!tproc) { |
|
return false; |
|
} |
|
*tproc = proc; |
|
|
|
uint8_t thread_priority = APM_IO_PRIORITY; |
|
static const struct { |
|
priority_base base; |
|
uint8_t p; |
|
} priority_map[] = { |
|
{ PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST}, |
|
{ PRIORITY_MAIN, APM_MAIN_PRIORITY}, |
|
{ PRIORITY_SPI, APM_SPI_PRIORITY}, |
|
{ PRIORITY_I2C, APM_I2C_PRIORITY}, |
|
{ PRIORITY_CAN, APM_CAN_PRIORITY}, |
|
{ PRIORITY_TIMER, APM_TIMER_PRIORITY}, |
|
{ PRIORITY_RCIN, APM_TIMER_PRIORITY}, |
|
{ PRIORITY_IO, APM_IO_PRIORITY}, |
|
{ PRIORITY_UART, APM_UART_PRIORITY}, |
|
{ PRIORITY_STORAGE, APM_STORAGE_PRIORITY}, |
|
{ PRIORITY_SCRIPTING, APM_SCRIPTING_PRIORITY}, |
|
}; |
|
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) { |
|
if (priority_map[i].base == base) { |
|
thread_priority = constrain_int16(priority_map[i].p + priority, 1, APM_MAX_PRIORITY); |
|
break; |
|
} |
|
} |
|
pthread_t thread; |
|
pthread_attr_t thread_attr; |
|
struct sched_param param; |
|
|
|
pthread_attr_init(&thread_attr); |
|
pthread_attr_setstacksize(&thread_attr, stack_size); |
|
|
|
param.sched_priority = thread_priority; |
|
(void)pthread_attr_setschedparam(&thread_attr, ¶m); |
|
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO); |
|
|
|
if (pthread_create(&thread, &thread_attr, thread_create_trampoline, tproc) != 0) { |
|
free(tproc); |
|
return false; |
|
} |
|
pthread_setname_np(thread, name); |
|
return true; |
|
} |
|
|
|
#endif
|
|
|