You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
287 lines
11 KiB
287 lines
11 KiB
#include "AP_NavEKF2.h" |
|
|
|
#include <AP_HAL/HAL.h> |
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
void NavEKF2::Log_Write_EKF1(uint8_t _core, LogMessages msg_id, uint64_t time_us) const |
|
{ |
|
// Write first EKF packet |
|
Vector3f euler; |
|
Vector2f posNE; |
|
float posD; |
|
Vector3f velNED; |
|
Vector3f gyroBias; |
|
float posDownDeriv; |
|
Location originLLH; |
|
getEulerAngles(_core,euler); |
|
getVelNED(_core,velNED); |
|
getPosNE(_core,posNE); |
|
getPosD(_core,posD); |
|
getGyroBias(_core,gyroBias); |
|
posDownDeriv = getPosDownDerivative(_core); |
|
if (!getOriginLLH(_core,originLLH)) { |
|
originLLH.alt = 0; |
|
} |
|
const struct log_EKF1 pkt{ |
|
LOG_PACKET_HEADER_INIT(msg_id), |
|
time_us : time_us, |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNE.x), // metres North |
|
posE : (float)(posNE.y), // metres East |
|
posD : (float)(posD), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string |
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm |
|
}; |
|
AP::logger().WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void NavEKF2::Log_Write_NKF2(uint8_t _core, LogMessages msg_id, uint64_t time_us) const |
|
{ |
|
// Write second EKF packet |
|
float azbias = 0; |
|
Vector3f wind; |
|
Vector3f magNED; |
|
Vector3f magXYZ; |
|
Vector3f gyroScaleFactor; |
|
uint8_t magIndex = getActiveMag(_core); |
|
getAccelZBias(_core,azbias); |
|
getWind(_core,wind); |
|
getMagNED(_core,magNED); |
|
getMagXYZ(_core,magXYZ); |
|
getGyroScaleErrorPercentage(_core,gyroScaleFactor); |
|
const struct log_NKF2 pkt2{ |
|
LOG_PACKET_HEADER_INIT(msg_id), |
|
time_us : time_us, |
|
AZbias : (int8_t)(100*azbias), |
|
scaleX : (int16_t)(100*gyroScaleFactor.x), |
|
scaleY : (int16_t)(100*gyroScaleFactor.y), |
|
scaleZ : (int16_t)(100*gyroScaleFactor.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
AP::logger().WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
|
|
void NavEKF2::Log_Write_NKF3(uint8_t _core, LogMessages msg_id, uint64_t time_us) const |
|
{ |
|
// Write third EKF packet |
|
Vector3f velInnov; |
|
Vector3f posInnov; |
|
Vector3f magInnov; |
|
float tasInnov = 0; |
|
float yawInnov = 0; |
|
getInnovations(_core,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
const struct log_NKF3 pkt3{ |
|
LOG_PACKET_HEADER_INIT(msg_id), |
|
time_us : time_us, |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
AP::logger().WriteBlock(&pkt3, sizeof(pkt3)); |
|
} |
|
|
|
void NavEKF2::Log_Write_NKF4(uint8_t _core, LogMessages msg_id, uint64_t time_us) const |
|
{ |
|
// Write fourth EKF packet |
|
float velVar = 0; |
|
float posVar = 0; |
|
float hgtVar = 0; |
|
Vector3f magVar; |
|
float tasVar = 0; |
|
Vector2f offset; |
|
uint16_t faultStatus=0; |
|
uint8_t timeoutStatus=0; |
|
nav_filter_status solutionStatus {}; |
|
nav_gps_status gpsStatus {}; |
|
getVariances(_core,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z); |
|
getFilterFaults(_core,faultStatus); |
|
getFilterTimeouts(_core,timeoutStatus); |
|
getFilterStatus(_core,solutionStatus); |
|
getFilterGpsStatus(_core,gpsStatus); |
|
float tiltError; |
|
getTiltError(_core,tiltError); |
|
int8_t primaryIndex = getPrimaryCoreIndex(); |
|
const struct log_NKF4 pkt4{ |
|
LOG_PACKET_HEADER_INIT(msg_id), |
|
time_us : time_us, |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*tempVar), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint16_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
AP::logger().WriteBlock(&pkt4, sizeof(pkt4)); |
|
} |
|
|
|
void NavEKF2::Log_Write_NKF5(uint64_t time_us) const |
|
{ |
|
// Write fifth EKF packet - take data from the primary instance |
|
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter |
|
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum |
|
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter |
|
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator |
|
float HAGL=0; // height above ground level |
|
float rngInnov=0; // range finder innovations |
|
float range=0; // measured range |
|
float gndOffsetErr=0; // filter ground offset state error |
|
Vector3f predictorErrors; // output predictor angle, velocity and position tracking error |
|
getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); |
|
getOutputTrackingError(-1,predictorErrors); |
|
const struct log_NKF5 pkt5{ |
|
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG), |
|
time_us : time_us, |
|
normInnov : (uint8_t)(MIN(100*normInnov,255)), |
|
FIX : (int16_t)(1000*flowInnovX), |
|
FIY : (int16_t)(1000*flowInnovY), |
|
AFI : (int16_t)(1000*auxFlowInnov), |
|
HAGL : (int16_t)(100*HAGL), |
|
offset : (int16_t)(100*gndOffset), |
|
RI : (int16_t)(100*rngInnov), |
|
meaRng : (uint16_t)(100*range), |
|
errHAGL : (uint16_t)(100*gndOffsetErr), |
|
angErr : (float)predictorErrors.x, |
|
velErr : (float)predictorErrors.y, |
|
posErr : (float)predictorErrors.z |
|
}; |
|
AP::logger().WriteBlock(&pkt5, sizeof(pkt5)); |
|
} |
|
|
|
void NavEKF2::Log_Write_Quaternion(uint8_t _core, LogMessages msg_id, uint64_t time_us) const |
|
{ |
|
// log quaternion |
|
Quaternion quat; |
|
getQuaternion(_core, quat); |
|
const struct log_Quaternion pktq1{ |
|
LOG_PACKET_HEADER_INIT(msg_id), |
|
time_us : time_us, |
|
q1 : quat.q1, |
|
q2 : quat.q2, |
|
q3 : quat.q3, |
|
q4 : quat.q4 |
|
}; |
|
AP::logger().WriteBlock(&pktq1, sizeof(pktq1)); |
|
} |
|
|
|
void NavEKF2::Log_Write_Beacon(uint64_t time_us) const |
|
{ |
|
if (AP::beacon() != nullptr) { |
|
uint8_t ID; |
|
float rng; |
|
float innovVar; |
|
float innov; |
|
float testRatio; |
|
Vector3f beaconPosNED; |
|
float bcnPosOffsetHigh; |
|
float bcnPosOffsetLow; |
|
if (getRangeBeaconDebug(-1, ID, rng, innov, innovVar, testRatio, beaconPosNED, bcnPosOffsetHigh, bcnPosOffsetLow)) { |
|
if (rng > 0.0f) { |
|
struct log_RngBcnDebug pkt10 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF10_MSG), |
|
time_us : time_us, |
|
ID : (uint8_t)ID, |
|
rng : (int16_t)(100*rng), |
|
innov : (int16_t)(100*innov), |
|
sqrtInnovVar : (uint16_t)(100*safe_sqrt(innovVar)), |
|
testRatio : (uint16_t)(100*constrain_float(testRatio,0.0f,650.0f)), |
|
beaconPosN : (int16_t)(100*beaconPosNED.x), |
|
beaconPosE : (int16_t)(100*beaconPosNED.y), |
|
beaconPosD : (int16_t)(100*beaconPosNED.z), |
|
offsetHigh : (int16_t)(100*bcnPosOffsetHigh), |
|
offsetLow : (int16_t)(100*bcnPosOffsetLow), |
|
posN : 0, |
|
posE : 0, |
|
posD : 0 |
|
}; |
|
AP::logger().WriteBlock(&pkt10, sizeof(pkt10)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void NavEKF2::Log_Write() |
|
{ |
|
// only log if enabled |
|
if (activeCores() <= 0) { |
|
return; |
|
} |
|
|
|
const uint64_t time_us = AP_HAL::micros64(); |
|
|
|
Log_Write_EKF1(0, LOG_NKF1_MSG, time_us); |
|
Log_Write_NKF2(0, LOG_NKF2_MSG, time_us); |
|
Log_Write_NKF3(0, LOG_NKF3_MSG, time_us); |
|
Log_Write_NKF4(0, LOG_NKF4_MSG, time_us); |
|
Log_Write_NKF5(time_us); |
|
Log_Write_Quaternion(0, LOG_NKQ1_MSG, time_us); |
|
|
|
// log EKF state info for the second EFK core if enabled |
|
if (activeCores() >= 2) { |
|
Log_Write_EKF1(1, LOG_NKF6_MSG, time_us); |
|
Log_Write_NKF2(1, LOG_NKF7_MSG, time_us); |
|
Log_Write_NKF3(1, LOG_NKF8_MSG, time_us); |
|
Log_Write_NKF4(1, LOG_NKF9_MSG, time_us); |
|
Log_Write_Quaternion(1, LOG_NKQ2_MSG, time_us); |
|
} |
|
|
|
// log EKF state info for the third EFK core if enabled |
|
if (activeCores() >= 3) { |
|
Log_Write_EKF1(2, LOG_NKF11_MSG, time_us); |
|
Log_Write_NKF2(2, LOG_NKF12_MSG, time_us); |
|
Log_Write_NKF3(2, LOG_NKF13_MSG, time_us); |
|
Log_Write_NKF4(2, LOG_NKF14_MSG, time_us); |
|
Log_Write_Quaternion(2, LOG_NKQ3_MSG, time_us); |
|
} |
|
|
|
// write range beacon fusion debug packet if the range value is non-zero |
|
Log_Write_Beacon(time_us); |
|
|
|
// log EKF timing statistics every 5s |
|
static uint32_t lastTimingLogTime_ms = 0; |
|
if (AP_HAL::millis() - lastTimingLogTime_ms > 5000) { |
|
lastTimingLogTime_ms = AP_HAL::millis(); |
|
struct ekf_timing timing; |
|
for (uint8_t i=0; i<activeCores(); i++) { |
|
getTimingStatistics(i, timing); |
|
if (i == 0) { |
|
Log_EKF_Timing("NKT1", time_us, timing); |
|
} else if (i == 1) { |
|
Log_EKF_Timing("NKT2", time_us, timing); |
|
} else if (i == 2) { |
|
Log_EKF_Timing("NKT3", time_us, timing); |
|
} |
|
} |
|
} |
|
}
|
|
|