You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
7.9 KiB
248 lines
7.9 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_InertialSensor.h" |
|
#include "AP_InertialSensor_Backend.h" |
|
#include <DataFlash/DataFlash.h> |
|
|
|
const extern AP_HAL::HAL& hal; |
|
|
|
AP_InertialSensor_Backend::AP_InertialSensor_Backend(AP_InertialSensor &imu) : |
|
_imu(imu), |
|
_product_id(AP_PRODUCT_ID_NONE) |
|
{} |
|
|
|
void AP_InertialSensor_Backend::_rotate_and_correct_accel(uint8_t instance, Vector3f &accel) |
|
{ |
|
/* |
|
accel calibration is always done in sensor frame with this |
|
version of the code. That means we apply the rotation after the |
|
offsets and scaling. |
|
*/ |
|
|
|
// apply offsets |
|
accel -= _imu._accel_offset[instance]; |
|
|
|
// apply scaling |
|
const Vector3f &accel_scale = _imu._accel_scale[instance].get(); |
|
accel.x *= accel_scale.x; |
|
accel.y *= accel_scale.y; |
|
accel.z *= accel_scale.z; |
|
|
|
// rotate to body frame |
|
accel.rotate(_imu._board_orientation); |
|
} |
|
|
|
void AP_InertialSensor_Backend::_rotate_and_correct_gyro(uint8_t instance, Vector3f &gyro) |
|
{ |
|
// gyro calibration is always assumed to have been done in sensor frame |
|
gyro -= _imu._gyro_offset[instance]; |
|
gyro.rotate(_imu._board_orientation); |
|
} |
|
|
|
/* |
|
rotate gyro vector and add the gyro offset |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_gyro(uint8_t instance, const Vector3f &gyro) |
|
{ |
|
_imu._gyro[instance] = gyro; |
|
_imu._gyro_healthy[instance] = true; |
|
|
|
if (_imu._gyro_raw_sample_rates[instance] <= 0) { |
|
return; |
|
} |
|
|
|
// publish delta angle |
|
_imu._delta_angle[instance] = _imu._delta_angle_acc[instance]; |
|
_imu._delta_angle_valid[instance] = true; |
|
} |
|
|
|
void AP_InertialSensor_Backend::_notify_new_gyro_raw_sample(uint8_t instance, |
|
const Vector3f &gyro, |
|
uint64_t sample_us) |
|
{ |
|
float dt; |
|
|
|
if (_imu._gyro_raw_sample_rates[instance] <= 0) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._gyro_raw_sample_rates[instance]; |
|
|
|
// compute delta angle |
|
Vector3f delta_angle = (gyro + _imu._last_raw_gyro[instance]) * 0.5f * dt; |
|
|
|
// compute coning correction |
|
// see page 26 of: |
|
// Tian et al (2010) Three-loop Integration of GPS and Strapdown INS with Coning and Sculling Compensation |
|
// Available: http://www.sage.unsw.edu.au/snap/publications/tian_etal2010b.pdf |
|
// see also examples/coning.py |
|
Vector3f delta_coning = (_imu._delta_angle_acc[instance] + |
|
_imu._last_delta_angle[instance] * (1.0f / 6.0f)); |
|
delta_coning = delta_coning % delta_angle; |
|
delta_coning *= 0.5f; |
|
|
|
// integrate delta angle accumulator |
|
// the angles and coning corrections are accumulated separately in the |
|
// referenced paper, but in simulation little difference was found between |
|
// integrating together and integrating separately (see examples/coning.py) |
|
_imu._delta_angle_acc[instance] += delta_angle + delta_coning; |
|
|
|
// save previous delta angle for coning correction |
|
_imu._last_delta_angle[instance] = delta_angle; |
|
_imu._last_raw_gyro[instance] = gyro; |
|
|
|
_imu._gyro_filtered[instance] = _imu._gyro_filter[instance].apply(gyro); |
|
if (_imu._gyro_filtered[instance].is_nan() || _imu._gyro_filtered[instance].is_inf()) { |
|
_imu._gyro_filter[instance].reset(); |
|
} |
|
|
|
_imu._new_gyro_data[instance] = true; |
|
|
|
DataFlash_Class *dataflash = get_dataflash(); |
|
if (dataflash != NULL) { |
|
uint64_t now = AP_HAL::micros64(); |
|
struct log_GYRO pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GYR1_MSG+instance)), |
|
time_us : now, |
|
sample_us : sample_us?sample_us:now, |
|
GyrX : gyro.x, |
|
GyrY : gyro.y, |
|
GyrZ : gyro.z |
|
}; |
|
dataflash->WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
} |
|
|
|
/* |
|
rotate accel vector, scale and add the accel offset |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_accel(uint8_t instance, const Vector3f &accel) |
|
{ |
|
_imu._accel[instance] = accel; |
|
_imu._accel_healthy[instance] = true; |
|
|
|
if (_imu._accel_raw_sample_rates[instance] <= 0) { |
|
return; |
|
} |
|
|
|
// publish delta velocity |
|
_imu._delta_velocity[instance] = _imu._delta_velocity_acc[instance]; |
|
_imu._delta_velocity_dt[instance] = _imu._delta_velocity_acc_dt[instance]; |
|
_imu._delta_velocity_valid[instance] = true; |
|
} |
|
|
|
void AP_InertialSensor_Backend::_notify_new_accel_raw_sample(uint8_t instance, |
|
const Vector3f &accel, |
|
uint64_t sample_us) |
|
{ |
|
float dt; |
|
|
|
if (_imu._accel_raw_sample_rates[instance] <= 0) { |
|
return; |
|
} |
|
|
|
dt = 1.0f / _imu._accel_raw_sample_rates[instance]; |
|
|
|
_imu.calc_vibration_and_clipping(instance, accel, dt); |
|
|
|
// delta velocity |
|
_imu._delta_velocity_acc[instance] += accel * dt; |
|
_imu._delta_velocity_acc_dt[instance] += dt; |
|
|
|
_imu._accel_filtered[instance] = _imu._accel_filter[instance].apply(accel); |
|
if (_imu._accel_filtered[instance].is_nan() || _imu._accel_filtered[instance].is_inf()) { |
|
_imu._accel_filter[instance].reset(); |
|
} |
|
|
|
_imu._new_accel_data[instance] = true; |
|
|
|
DataFlash_Class *dataflash = get_dataflash(); |
|
if (dataflash != NULL) { |
|
uint64_t now = AP_HAL::micros64(); |
|
struct log_ACCEL pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ACC1_MSG+instance)), |
|
time_us : now, |
|
sample_us : sample_us?sample_us:now, |
|
AccX : accel.x, |
|
AccY : accel.y, |
|
AccZ : accel.z |
|
}; |
|
dataflash->WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
} |
|
|
|
void AP_InertialSensor_Backend::_set_accel_max_abs_offset(uint8_t instance, |
|
float max_offset) |
|
{ |
|
_imu._accel_max_abs_offsets[instance] = max_offset; |
|
} |
|
|
|
// set accelerometer error_count |
|
void AP_InertialSensor_Backend::_set_accel_error_count(uint8_t instance, uint32_t error_count) |
|
{ |
|
_imu._accel_error_count[instance] = error_count; |
|
} |
|
|
|
// set gyro error_count |
|
void AP_InertialSensor_Backend::_set_gyro_error_count(uint8_t instance, uint32_t error_count) |
|
{ |
|
_imu._gyro_error_count[instance] = error_count; |
|
} |
|
|
|
// return the requested sample rate in Hz |
|
uint16_t AP_InertialSensor_Backend::get_sample_rate_hz(void) const |
|
{ |
|
// enum can be directly cast to Hz |
|
return (uint16_t)_imu._sample_rate; |
|
} |
|
|
|
/* |
|
publish a temperature value for an instance |
|
*/ |
|
void AP_InertialSensor_Backend::_publish_temperature(uint8_t instance, float temperature) |
|
{ |
|
_imu._temperature[instance] = temperature; |
|
} |
|
|
|
/* |
|
common gyro update function for all backends |
|
*/ |
|
void AP_InertialSensor_Backend::update_gyro(uint8_t instance) |
|
{ |
|
hal.scheduler->suspend_timer_procs(); |
|
|
|
if (_imu._new_gyro_data[instance]) { |
|
_publish_gyro(instance, _imu._gyro_filtered[instance]); |
|
_imu._new_gyro_data[instance] = false; |
|
} |
|
|
|
// possibly update filter frequency |
|
if (_last_gyro_filter_hz[instance] != _gyro_filter_cutoff()) { |
|
_imu._gyro_filter[instance].set_cutoff_frequency(_gyro_raw_sample_rate(instance), _gyro_filter_cutoff()); |
|
_last_gyro_filter_hz[instance] = _gyro_filter_cutoff(); |
|
} |
|
|
|
hal.scheduler->resume_timer_procs(); |
|
} |
|
|
|
/* |
|
common accel update function for all backends |
|
*/ |
|
void AP_InertialSensor_Backend::update_accel(uint8_t instance) |
|
{ |
|
hal.scheduler->suspend_timer_procs(); |
|
|
|
if (_imu._new_accel_data[instance]) { |
|
_publish_accel(instance, _imu._accel_filtered[instance]); |
|
_imu._new_accel_data[instance] = false; |
|
} |
|
|
|
// possibly update filter frequency |
|
if (_last_accel_filter_hz[instance] != _accel_filter_cutoff()) { |
|
_imu._accel_filter[instance].set_cutoff_frequency(_accel_raw_sample_rate(instance), _accel_filter_cutoff()); |
|
_last_accel_filter_hz[instance] = _accel_filter_cutoff(); |
|
} |
|
|
|
hal.scheduler->resume_timer_procs(); |
|
}
|
|
|