You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
694 lines
27 KiB
694 lines
27 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#include <AP_HAL.h> |
|
#include <AC_PosControl.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = { |
|
// @Param: THR_HOVER |
|
// @DisplayName: Throttle Hover |
|
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode |
|
// @Range: 0 1000 |
|
// @Units: Percent*10 |
|
// @User: Advanced |
|
AP_GROUPINFO("THR_HOVER", 0, AC_PosControl, _throttle_hover, POSCONTROL_THROTTLE_HOVER), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav, |
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control, |
|
APM_PI& pi_alt_pos, AC_PID& pid_alt_rate, AC_PID& pid_alt_accel, |
|
APM_PI& pi_pos_lat, APM_PI& pi_pos_lon, AC_PID& pid_rate_lat, AC_PID& pid_rate_lon) : |
|
_ahrs(ahrs), |
|
_inav(inav), |
|
_motors(motors), |
|
_attitude_control(attitude_control), |
|
_pi_alt_pos(pi_alt_pos), |
|
_pid_alt_rate(pid_alt_rate), |
|
_pid_alt_accel(pid_alt_accel), |
|
_pi_pos_lat(pi_pos_lat), |
|
_pi_pos_lon(pi_pos_lon), |
|
_pid_rate_lat(pid_rate_lat), |
|
_pid_rate_lon(pid_rate_lon), |
|
_dt(POSCONTROL_DT_10HZ), |
|
_last_update_ms(0), |
|
_last_update_rate_ms(0), |
|
_last_update_accel_ms(0), |
|
_step(0), |
|
_speed_down_cms(POSCONTROL_SPEED_DOWN), |
|
_speed_up_cms(POSCONTROL_SPEED_UP), |
|
_speed_cms(POSCONTROL_SPEED), |
|
_accel_z_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default |
|
_accel_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default |
|
_leash(POSCONTROL_LEASH_LENGTH_MIN), |
|
_cos_yaw(1.0), |
|
_sin_yaw(0.0), |
|
_cos_pitch(1.0), |
|
_roll_target(0.0), |
|
_pitch_target(0.0), |
|
_vel_target_filt_z(0), |
|
_alt_max(0), |
|
_distance_to_target(0), |
|
_xy_step(0), |
|
_dt_xy(0) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// initialise flags |
|
_flags.force_recalc_xy = false; |
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150 |
|
_flags.slow_cpu = false; |
|
#else |
|
_flags.slow_cpu = true; |
|
#endif |
|
_flags.recalc_leash_xy = true; |
|
_flags.recalc_leash_z = true; |
|
} |
|
|
|
/// |
|
/// z-axis position controller |
|
/// |
|
|
|
/// set_speed_z - sets maximum climb and descent rates |
|
void AC_PosControl::set_speed_z(float speed_down, float speed_up) |
|
{ |
|
if ((fabs(_speed_down_cms-speed_down) > 1.0f) || (fabs(_speed_up_cms-speed_up) > 1.0f)) { |
|
_speed_down_cms = speed_down; |
|
_speed_up_cms = speed_up; |
|
_flags.recalc_leash_z = true; |
|
} |
|
} |
|
|
|
/// set_accel_z - set vertical acceleration in cm/s/s |
|
void AC_PosControl::set_accel_z(float accel_cmss) |
|
{ |
|
if (fabs(_accel_z_cms-accel_cmss) > 1.0f) { |
|
_accel_z_cms = accel_cmss; |
|
_flags.recalc_leash_z = true; |
|
} |
|
} |
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt) |
|
{ |
|
float alt_change = alt_cm-_pos_target.z; |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) { |
|
_pos_target.z += constrain_float(alt_change, _speed_down_cms*dt, _speed_up_cms*dt); |
|
} |
|
|
|
// do not let target get too far from current altitude |
|
float curr_alt = _inav.get_altitude(); |
|
_pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z); |
|
} |
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s |
|
/// should be called continuously (with dt set to be the expected time between calls) |
|
/// actual position target will be moved no faster than the speed_down and speed_up |
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded |
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt) |
|
{ |
|
// adjust desired alt if motors have not hit their limits |
|
// To-Do: add check of _limit.pos_up and _limit.pos_down? |
|
if ((climb_rate_cms<0 && !_motors.limit.throttle_lower) || (climb_rate_cms>0 && !_motors.limit.throttle_upper)) { |
|
_pos_target.z += climb_rate_cms * _dt; |
|
} |
|
} |
|
|
|
// get_alt_error - returns altitude error in cm |
|
float AC_PosControl::get_alt_error() const |
|
{ |
|
return (_pos_target.z - _inav.get_altitude()); |
|
} |
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home |
|
void AC_PosControl::set_target_to_stopping_point_z() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt |
|
float linear_velocity; // the velocity we swap between linear and sqrt |
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear funcction to a sqrt function |
|
linear_velocity = POSCONTROL_ALT_HOLD_ACCEL_MAX/_pi_alt_pos.kP(); |
|
|
|
if (fabs(curr_vel.z) < linear_velocity) { |
|
// if our current velocity is below the cross-over point we use a linear function |
|
_pos_target.z = curr_pos.z + curr_vel.z/_pi_alt_pos.kP(); |
|
} else { |
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP()); |
|
if (curr_vel.z > 0){ |
|
_pos_target.z = curr_pos.z + (linear_distance + curr_vel.z*curr_vel.z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX)); |
|
} else { |
|
_pos_target.z = curr_pos.z - (linear_distance + curr_vel.z*curr_vel.z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX)); |
|
} |
|
} |
|
_pos_target.z = constrain_float(_pos_target.z, curr_pos.z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos.z + POSCONTROL_STOPPING_DIST_Z_MAX); |
|
} |
|
|
|
/// init_takeoff - initialises target altitude if we are taking off |
|
void AC_PosControl::init_takeoff() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
|
|
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM; |
|
|
|
// clear i term from acceleration controller |
|
if (_pid_alt_accel.get_integrator() < 0) { |
|
_pid_alt_accel.reset_I(); |
|
} |
|
} |
|
|
|
/// update_z_controller - fly to altitude in cm above home |
|
void AC_PosControl::update_z_controller() |
|
{ |
|
// check if leash lengths need to be recalculated |
|
calc_leash_length_z(); |
|
|
|
// call position controller |
|
pos_to_rate_z(); |
|
} |
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration |
|
/// called by pos_to_rate_z if z-axis speed or accelerations are changed |
|
void AC_PosControl::calc_leash_length_z() |
|
{ |
|
if (_flags.recalc_leash_z) { |
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _pi_alt_pos.kP()); |
|
_leash_down_z = calc_leash_length(_speed_down_cms, _accel_z_cms, _pi_alt_pos.kP()); |
|
_flags.recalc_leash_z = false; |
|
// debug -- remove me! |
|
hal.console->printf_P(PSTR("\nLLZ:%4.2f %4.2f\n"),(float)_leash_up_z, (float)_leash_down_z); |
|
} |
|
} |
|
|
|
// pos_to_rate_z - position to rate controller for Z axis |
|
// calculates desired rate in earth-frame z axis and passes to rate controller |
|
// vel_up_max, vel_down_max should have already been set before calling this method |
|
void AC_PosControl::pos_to_rate_z() |
|
{ |
|
float curr_alt = _inav.get_altitude(); |
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt. |
|
|
|
// clear position limit flags |
|
_limit.pos_up = false; |
|
_limit.pos_down = false; |
|
|
|
// calculate altitude error |
|
_pos_error.z = _pos_target.z - curr_alt; |
|
|
|
// do not let target altitude get too far from current altitude |
|
if (_pos_error.z > _leash_up_z) { |
|
_pos_target.z = curr_alt + _leash_up_z; |
|
_limit.pos_up = true; |
|
} |
|
if (_pos_error.z < -_leash_down_z) { |
|
_pos_target.z = curr_alt - _leash_down_z; |
|
_limit.pos_down = true; |
|
} |
|
|
|
// do not let target alt get above limit |
|
if (_alt_max > 0 && _pos_target.z > _alt_max) { |
|
_pos_target.z = _alt_max; |
|
_limit.pos_up = true; |
|
} |
|
|
|
// check kP to avoid division by zero |
|
if (_pi_alt_pos.kP() != 0) { |
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP()); |
|
if (_pos_error.z > 2*linear_distance ) { |
|
_vel_target.z = safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(_pos_error.z-linear_distance)); |
|
}else if (_pos_error.z < -2.0f*linear_distance) { |
|
_vel_target.z = -safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(-_pos_error.z-linear_distance)); |
|
}else{ |
|
_vel_target.z = _pi_alt_pos.get_p(_pos_error.z); |
|
} |
|
}else{ |
|
_vel_target.z = 0; |
|
} |
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets |
|
rate_to_accel_z(_vel_target.z); |
|
} |
|
|
|
// rate_to_accel_z - calculates desired accel required to achieve the velocity target |
|
// calculates desired acceleration and calls accel throttle controller |
|
void AC_PosControl::rate_to_accel_z(float vel_target_z) |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
float z_target_speed_delta; // The change in requested speed |
|
float p; // used to capture pid values for logging |
|
float desired_accel; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors |
|
|
|
// check speed limits |
|
// To-Do: check these speed limits here or in the pos->rate controller |
|
_limit.vel_up = false; |
|
_limit.vel_down = false; |
|
if (_vel_target.z < _speed_down_cms) { |
|
_vel_target.z = _speed_down_cms; |
|
_limit.vel_down = true; |
|
} |
|
if (_vel_target.z > _speed_up_cms) { |
|
_vel_target.z = _speed_up_cms; |
|
_limit.vel_up = true; |
|
} |
|
|
|
// reset velocity error and filter if this controller has just been engaged |
|
if (now - _last_update_rate_ms > 100 ) { |
|
// Reset Filter |
|
_vel_error.z = 0; |
|
_vel_target_filt_z = vel_target_z; |
|
desired_accel = 0; |
|
} else { |
|
// calculate rate error and filter with cut off frequency of 2 Hz |
|
//To-Do: adjust constant below based on update rate |
|
_vel_error.z = _vel_error.z + 0.20085f * ((vel_target_z - curr_vel.z) - _vel_error.z); |
|
// feed forward acceleration based on change in the filtered desired speed. |
|
z_target_speed_delta = 0.20085f * (vel_target_z - _vel_target_filt_z); |
|
_vel_target_filt_z = _vel_target_filt_z + z_target_speed_delta; |
|
desired_accel = z_target_speed_delta / _dt; |
|
} |
|
_last_update_rate_ms = now; |
|
|
|
// calculate p |
|
p = _pid_alt_rate.kP() * _vel_error.z; |
|
|
|
// consolidate and constrain target acceleration |
|
desired_accel += p; |
|
desired_accel = constrain_int32(desired_accel, -32000, 32000); |
|
|
|
// To-Do: re-enable PID logging? |
|
// TO-DO: ensure throttle cruise is updated some other way in the main code or attitude control |
|
|
|
// set target for accel based throttle controller |
|
accel_to_throttle(desired_accel); |
|
} |
|
|
|
// accel_to_throttle - alt hold's acceleration controller |
|
// calculates a desired throttle which is sent directly to the motors |
|
void AC_PosControl::accel_to_throttle(float accel_target_z) |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
float z_accel_meas; // actual acceleration |
|
int32_t p,i,d; // used to capture pid values for logging |
|
|
|
// Calculate Earth Frame Z acceleration |
|
z_accel_meas = -(_ahrs.get_accel_ef().z + GRAVITY_MSS) * 100.0f; |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if (now - _last_update_accel_ms > 100) { |
|
// Reset Filter |
|
_accel_error.z = 0; |
|
} else { |
|
// calculate accel error and Filter with fc = 2 Hz |
|
// To-Do: replace constant below with one that is adjusted for update rate |
|
_accel_error.z = _accel_error.z + 0.11164f * (constrain_float(accel_target_z - z_accel_meas, -32000, 32000) - _accel_error.z); |
|
} |
|
_last_update_accel_ms = now; |
|
|
|
// separately calculate p, i, d values for logging |
|
p = _pid_alt_accel.get_p(_accel_error.z); |
|
|
|
// get i term |
|
i = _pid_alt_accel.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
// To-Do: should this be replaced with limits check from attitude_controller? |
|
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) { |
|
i = _pid_alt_accel.get_i(_accel_error.z, _dt); |
|
} |
|
|
|
// get d term |
|
d = _pid_alt_accel.get_d(_accel_error.z, _dt); |
|
|
|
// To-Do: pull min/max throttle from motors |
|
// To-Do: where to get hover throttle? |
|
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok? |
|
_attitude_control.set_throttle_out((int16_t)p+i+d+_throttle_hover, true); |
|
|
|
// to-do add back in PID logging? |
|
} |
|
|
|
/// |
|
/// position controller |
|
/// |
|
|
|
/// set_accel_xy - set horizontal acceleration in cm/s/s |
|
/// calc_leash_length_xy should be called afterwards |
|
void AC_PosControl::set_accel_xy(float accel_cmss) |
|
{ |
|
if (fabs(_accel_cms-accel_cmss) > 1.0f) { |
|
_accel_cms = accel_cmss; |
|
_flags.recalc_leash_xy = true; |
|
} |
|
} |
|
|
|
/// set_speed_xy - set horizontal speed maximum in cm/s |
|
/// calc_leash_length_xy should be called afterwards |
|
void AC_PosControl::set_speed_xy(float speed_cms) |
|
{ |
|
if (fabs(_speed_cms-speed_cms) > 1.0f) { |
|
_speed_cms = speed_cms; |
|
_flags.recalc_leash_xy = true; |
|
} |
|
} |
|
|
|
/// set_pos_target in cm from home |
|
void AC_PosControl::set_pos_target(const Vector3f& position) |
|
{ |
|
_pos_target = position; |
|
|
|
// debug -- remove me! |
|
static uint8_t counter = 0; |
|
counter++; |
|
if (counter >= 10) { |
|
counter = 0; |
|
hal.console->printf_P(PSTR("\nPosX:%4.2f Y:%4.2f Z:%4.2f\n"), (float)_pos_target.x, (float)_pos_target.y, (float)_pos_target.z); |
|
} |
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run |
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle |
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max()); |
|
} |
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration |
|
/// distance_max allows limiting distance to stopping point |
|
/// results placed in stopping_position vector |
|
/// set_accel_xy() should be called before this method to set vehicle acceleration |
|
/// set_leash_length() should have been called before this method |
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const |
|
{ |
|
Vector3f curr_pos = _inav.get_position(); |
|
Vector3f curr_vel = _inav.get_velocity(); |
|
float linear_distance; // the distance at which we swap from a linear to sqrt response |
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response |
|
float stopping_dist; // the distance within the vehicle can stop |
|
float kP = _pi_pos_lat.kP(); |
|
|
|
// calculate current velocity |
|
float vel_total = safe_sqrt(curr_vel.x*curr_vel.x + curr_vel.y*curr_vel.y); |
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (vel_total < 10.0f || kP <= 0.0f || _accel_cms <= 0.0f) { |
|
stopping_point = curr_pos; |
|
return; |
|
} |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
linear_velocity = _accel_cms/kP; |
|
|
|
// calculate distance within which we can stop |
|
if (vel_total < linear_velocity) { |
|
stopping_dist = vel_total/kP; |
|
} else { |
|
linear_distance = _accel_cms/(2.0f*kP*kP); |
|
stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms); |
|
} |
|
|
|
// constrain stopping distance |
|
stopping_dist = constrain_float(stopping_dist, 0, _leash); |
|
|
|
// convert the stopping distance into a stopping point using velocity vector |
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total); |
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total); |
|
} |
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm |
|
float AC_PosControl::get_distance_to_target() const |
|
{ |
|
return _distance_to_target; |
|
} |
|
|
|
/// update_pos_controller - run the horizontal position controller - should be called at 100hz or higher |
|
void AC_PosControl::update_pos_controller(bool use_desired_velocity) |
|
{ |
|
// catch if we've just been started |
|
uint32_t now = hal.scheduler->millis(); |
|
if ((now - _last_update_ms) >= 1000) { |
|
_last_update_ms = now; |
|
reset_I_xy(); |
|
_xy_step = 0; |
|
} |
|
|
|
// check if xy leash needs to be recalculated |
|
calc_leash_length_xy(); |
|
|
|
// reset step back to 0 if loiter or waypoint parents have triggered an update and we completed the last full cycle |
|
if (_flags.force_recalc_xy && _xy_step > 3) { |
|
_flags.force_recalc_xy = false; |
|
_xy_step = 0; |
|
} |
|
|
|
// run loiter steps |
|
switch (_xy_step) { |
|
case 0: |
|
// capture time since last iteration |
|
_dt_xy = (now - _last_update_ms) / 1000.0f; |
|
_last_update_ms = now; |
|
|
|
// translate any adjustments from pilot to loiter target |
|
desired_vel_to_pos(_dt_xy); |
|
_xy_step++; |
|
break; |
|
case 1: |
|
// run position controller's position error to desired velocity step |
|
pos_to_rate_xy(use_desired_velocity,_dt_xy); |
|
_xy_step++; |
|
break; |
|
case 2: |
|
// run position controller's velocity to acceleration step |
|
rate_to_accel_xy(_dt_xy); |
|
_xy_step++; |
|
break; |
|
case 3: |
|
// run position controller's acceleration to lean angle step |
|
accel_to_lean_angles(); |
|
_xy_step++; |
|
break; |
|
} |
|
} |
|
|
|
/// |
|
/// private methods |
|
/// |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration |
|
/// should be called whenever the speed, acceleration or position kP is modified |
|
void AC_PosControl::calc_leash_length_xy() |
|
{ |
|
if (_flags.recalc_leash_xy) { |
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _pi_pos_lon.kP()); |
|
_flags.recalc_leash_xy = false; |
|
// debug -- remove me! |
|
hal.console->printf_P(PSTR("\nXYA:%4.2f S:%4.2f kP:%4.2f\n"),(float)_accel_cms, (float)_speed_cms, (float)_pi_pos_lon.kP()); |
|
hal.console->printf_P(PSTR("\nLLXY:%4.2f\n"),(float)_leash); |
|
} |
|
} |
|
|
|
/// desired_vel_to_pos - move position target using desired velocities |
|
void AC_PosControl::desired_vel_to_pos(float nav_dt) |
|
{ |
|
Vector2f target_vel_adj; |
|
float vel_desired_total; |
|
|
|
// range check nav_dt |
|
if( nav_dt < 0 ) { |
|
return; |
|
} |
|
|
|
// constrain and scale the desired velocity |
|
vel_desired_total = safe_sqrt(_vel_desired.x*_vel_desired.x + _vel_desired.y*_vel_desired.y); |
|
if (vel_desired_total > _speed_cms && vel_desired_total > 0.0f) { |
|
_vel_desired.x = _speed_cms * _vel_desired.x/vel_desired_total; |
|
_vel_desired.y = _speed_cms * _vel_desired.y/vel_desired_total; |
|
} |
|
|
|
// update target position |
|
_pos_target.x += _vel_desired.x * nav_dt; |
|
_pos_target.y += _vel_desired.y * nav_dt; |
|
} |
|
|
|
/// pos_to_rate_xy - horizontal position error to velocity controller |
|
/// converts position (_pos_target) to target velocity (_vel_target) |
|
/// when use_desired_rate is set to true: |
|
/// desired velocity (_vel_desired) is combined into final target velocity and |
|
/// velocity due to position error is reduce to a maximum of 1m/s |
|
void AC_PosControl::pos_to_rate_xy(bool use_desired_rate, float dt) |
|
{ |
|
Vector3f curr_pos = _inav.get_position(); |
|
float linear_distance; // the distance we swap between linear and sqrt velocity response |
|
float kP = _pi_pos_lat.kP(); |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
_vel_target.x = 0.0; |
|
_vel_target.y = 0.0; |
|
}else{ |
|
// calculate distance error |
|
_pos_error.x = _pos_target.x - curr_pos.x; |
|
_pos_error.y = _pos_target.y - curr_pos.y; |
|
|
|
// constrain target position to within reasonable distance of current location |
|
_distance_to_target = safe_sqrt(_pos_error.x*_pos_error.x + _pos_error.y*_pos_error.y); |
|
if (_distance_to_target > _leash && _distance_to_target > 0.0f) { |
|
_pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target; |
|
_pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target; |
|
// re-calculate distance error |
|
_pos_error.x = _pos_target.x - curr_pos.x; |
|
_pos_error.y = _pos_target.y - curr_pos.y; |
|
_distance_to_target = _leash; |
|
} |
|
|
|
// calculate the distance at which we swap between linear and sqrt velocity response |
|
linear_distance = _accel_cms/(2.0f*kP*kP); |
|
|
|
if (_distance_to_target > 2.0f*linear_distance) { |
|
// velocity response grows with the square root of the distance |
|
float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance)); |
|
_vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target; |
|
_vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target; |
|
}else{ |
|
// velocity response grows linearly with the distance |
|
_vel_target.x = _pi_pos_lat.kP() * _pos_error.x; |
|
_vel_target.y = _pi_pos_lon.kP() * _pos_error.y; |
|
} |
|
|
|
// decide velocity limit due to position error |
|
float vel_max_from_pos_error; |
|
if (use_desired_rate) { |
|
// if desired velocity (i.e. velocity feed forward) is being used we limit the maximum velocity correction due to position error to 2m/s |
|
vel_max_from_pos_error = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR; |
|
}else{ |
|
// if desired velocity is not used, we allow position error to increase speed up to maximum speed |
|
vel_max_from_pos_error = _speed_cms; |
|
} |
|
|
|
// scale velocity to stays within limits |
|
float vel_total = safe_sqrt(_vel_target.x*_vel_target.x + _vel_target.y*_vel_target.y); |
|
if (vel_total > vel_max_from_pos_error) { |
|
_vel_target.x = vel_max_from_pos_error * _vel_target.x/vel_total; |
|
_vel_target.y = vel_max_from_pos_error * _vel_target.y/vel_total; |
|
} |
|
|
|
// add desired velocity (i.e. feed forward). |
|
if (use_desired_rate) { |
|
_vel_target.x += _vel_desired.x; |
|
_vel_target.y += _vel_desired.y; |
|
} |
|
} |
|
} |
|
|
|
/// rate_to_accel_xy - horizontal desired rate to desired acceleration |
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
void AC_PosControl::rate_to_accel_xy(float dt) |
|
{ |
|
const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s |
|
float accel_total; // total acceleration in cm/s/s |
|
|
|
// reset accel limit flag |
|
_limit.accel_xy = false; |
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero |
|
if (dt == 0.0) { |
|
_accel_target.x = 0; |
|
_accel_target.y = 0; |
|
} else { |
|
// feed forward desired acceleration calculation |
|
_accel_target.x = (_vel_target.x - _vel_last.x)/dt; |
|
_accel_target.y = (_vel_target.y - _vel_last.y)/dt; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.x = _vel_target.x; |
|
_vel_last.y = _vel_target.y; |
|
|
|
// calculate velocity error |
|
_vel_error.x = _vel_target.x - vel_curr.x; |
|
_vel_error.y = _vel_target.y - vel_curr.y; |
|
|
|
// combine feed foward accel with PID output from velocity error |
|
// To-Do: check accel limit flag before adding I term |
|
_accel_target.x += _pid_rate_lat.get_pid(_vel_error.x, dt); |
|
_accel_target.y += _pid_rate_lon.get_pid(_vel_error.y, dt); |
|
|
|
// scale desired acceleration if it's beyond acceptable limit |
|
// To-Do: move this check down to the accel_to_lean_angle method? |
|
accel_total = safe_sqrt(_accel_target.x*_accel_target.x + _accel_target.y*_accel_target.y); |
|
if (accel_total > POSCONTROL_ACCEL_XY_MAX) { |
|
_accel_target.x = POSCONTROL_ACCEL_XY_MAX * _accel_target.x/accel_total; |
|
_accel_target.y = POSCONTROL_ACCEL_XY_MAX * _accel_target.y/accel_total; |
|
_limit.accel_xy = true; // unused |
|
} |
|
} |
|
|
|
/// accel_to_lean_angles - horizontal desired acceleration to lean angles |
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
void AC_PosControl::accel_to_lean_angles() |
|
{ |
|
float accel_right, accel_forward; |
|
float lean_angle_max = _attitude_control.lean_angle_max(); |
|
|
|
// To-Do: add 1hz filter to accel_lat, accel_lon |
|
|
|
// rotate accelerations into body forward-right frame |
|
accel_forward = _accel_target.x*_cos_yaw + _accel_target.y*_sin_yaw; |
|
accel_right = -_accel_target.x*_sin_yaw + _accel_target.y*_cos_yaw; |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
_roll_target = constrain_float(fast_atan(accel_right*_cos_pitch/(GRAVITY_MSS * 100))*(18000/M_PI), -lean_angle_max, lean_angle_max); |
|
_pitch_target = constrain_float(fast_atan(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max); |
|
} |
|
|
|
/// reset_I_xy - clears I terms from loiter PID controller |
|
void AC_PosControl::reset_I_xy() |
|
{ |
|
_pi_pos_lon.reset_I(); |
|
_pi_pos_lat.reset_I(); |
|
_pid_rate_lon.reset_I(); |
|
_pid_rate_lat.reset_I(); |
|
|
|
// set last velocity to current velocity |
|
_vel_last = _inav.get_velocity(); |
|
} |
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain |
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const |
|
{ |
|
float leash_length; |
|
|
|
// sanity check acceleration and avoid divide by zero |
|
if (accel_cms <= 0.0f) { |
|
accel_cms = POSCONTROL_ACCELERATION_MIN; |
|
} |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
return POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
// calculate leash length |
|
if(speed_cms <= accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
leash_length = speed_cms / kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) { |
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN; |
|
} |
|
|
|
return leash_length; |
|
}
|
|
|