You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
686 lines
17 KiB
686 lines
17 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
The init_ardupilot function processes everything we need for an in - air restart |
|
We will determine later if we are actually on the ground and process a |
|
ground start in that case. |
|
|
|
*****************************************************************************/ |
|
|
|
#if CLI_ENABLED == ENABLED |
|
// Functions called from the top-level menu |
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
static int8_t planner_mode(uint8_t argc, const Menu::arg *argv); // in planner.pde |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
Serial.printf_P(PSTR("Commands:\n" |
|
" logs\n" |
|
" setup\n" |
|
" test\n" |
|
" planner\n" |
|
"\n" |
|
"Move the slide switch and reset to FLY.\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"help", main_menu_help}, |
|
{"planner", planner_mode} |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
// the user wants the CLI. It never exits |
|
static void run_cli(void) |
|
{ |
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void init_ardupilot() |
|
{ |
|
#if USB_MUX_PIN > 0 |
|
// on the APM2 board we have a mux thet switches UART0 between |
|
// USB and the board header. If the right ArduPPM firmware is |
|
// installed we can detect if USB is connected using the |
|
// USB_MUX_PIN |
|
pinMode(USB_MUX_PIN, INPUT); |
|
|
|
usb_connected = !digitalRead(USB_MUX_PIN); |
|
if (!usb_connected) { |
|
// USB is not connected, this means UART0 may be a Xbee, with |
|
// its darned bricking problem. We can't write to it for at |
|
// least one second after powering up. Simplest solution for |
|
// now is to delay for 1 second. Something more elegant may be |
|
// added later |
|
delay(1000); |
|
} |
|
#endif |
|
|
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the console's use as a logging device, optionally as the GPS port when |
|
// GPS_PROTOCOL_IMU is selected, and as the telemetry port. |
|
// |
|
// XXX This could be optimised to reduce the buffer sizes in the cases |
|
// where they are not otherwise required. |
|
// |
|
Serial.begin(SERIAL0_BAUD, 128, 128); |
|
|
|
// GPS serial port. |
|
// |
|
// Not used if the IMU/X-Plane GPS is in use. |
|
// |
|
// XXX currently the EM406 (SiRF receiver) is nominally configured |
|
// at 57600, however it's not been supported to date. We should |
|
// probably standardise on 38400. |
|
// |
|
// XXX the 128 byte receive buffer may be too small for NMEA, depending |
|
// on the message set configured. |
|
// |
|
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU |
|
Serial1.begin(38400, 128, 16); |
|
#endif |
|
|
|
Serial.printf_P(PSTR("\n\nInit " THISFIRMWARE |
|
"\n\nFree RAM: %u\n"), |
|
memcheck_available_memory()); |
|
|
|
// |
|
// Initialize Wire and SPI libraries |
|
// |
|
#ifndef DESKTOP_BUILD |
|
I2c.begin(); |
|
I2c.timeOut(5); |
|
// initially set a fast I2c speed, and drop it on first failures |
|
I2c.setSpeed(true); |
|
#endif |
|
SPI.begin(); |
|
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate |
|
// |
|
// Initialize the isr_registry. |
|
// |
|
isr_registry.init(); |
|
|
|
// |
|
// Check the EEPROM format version before loading any parameters from EEPROM. |
|
// |
|
report_version(); |
|
|
|
// setup IO pins |
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(A_LED_PIN, LED_OFF); |
|
|
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(B_LED_PIN, LED_OFF); |
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED |
|
digitalWrite(C_LED_PIN, LED_OFF); |
|
|
|
#if SLIDE_SWITCH_PIN > 0 |
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode |
|
#endif |
|
#if CONFIG_PUSHBUTTON == ENABLED |
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused |
|
#endif |
|
#if CONFIG_RELAY == ENABLED |
|
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay |
|
#endif |
|
// XXX set Analog out 14 to output |
|
// 76543210 |
|
//DDRK |= B01010000; |
|
|
|
#if MOTOR_LEDS == 1 |
|
pinMode(FR_LED, OUTPUT); // GPS status LED |
|
pinMode(RE_LED, OUTPUT); // GPS status LED |
|
pinMode(RI_LED, OUTPUT); // GPS status LED |
|
pinMode(LE_LED, OUTPUT); // GPS status LED |
|
#endif |
|
|
|
#if PIEZO == 1 |
|
pinMode(PIEZO_PIN,OUTPUT); |
|
piezo_beep(); |
|
#endif |
|
|
|
// load parameters from EEPROM |
|
load_parameters(); |
|
|
|
// init the GCS |
|
gcs0.init(&Serial); |
|
|
|
#if USB_MUX_PIN > 0 |
|
if (!usb_connected) { |
|
// we are not connected via USB, re-init UART0 with right |
|
// baud rate |
|
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); |
|
} |
|
#else |
|
// we have a 2nd serial port for telemetry |
|
Serial3.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); |
|
gcs3.init(&Serial3); |
|
#endif |
|
|
|
// identify ourselves correctly with the ground station |
|
mavlink_system.sysid = g.sysid_this_mav; |
|
mavlink_system.type = 2; //MAV_QUADROTOR; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
DataFlash.Init(); |
|
if (!DataFlash.CardInserted()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash inserted")); |
|
g.log_bitmask.set(0); |
|
} else if (DataFlash.NeedErase()) { |
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); |
|
do_erase_logs(); |
|
} |
|
if (g.log_bitmask != 0){ |
|
DataFlash.start_new_log(); |
|
} |
|
#endif |
|
|
|
#ifdef RADIO_OVERRIDE_DEFAULTS |
|
{ |
|
int16_t rc_override[8] = RADIO_OVERRIDE_DEFAULTS; |
|
APM_RC.setHIL(rc_override); |
|
} |
|
#endif |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
g.heli_servo_manual = false; |
|
heli_init_swash(); // heli initialisation |
|
#endif |
|
|
|
RC_Channel::set_apm_rc(&APM_RC); |
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
init_camera(); |
|
|
|
timer_scheduler.init( &isr_registry ); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
#if CONFIG_ADC == ENABLED |
|
// begin filtering the ADC Gyros |
|
adc.filter_result = true; |
|
adc.Init(&timer_scheduler); // APM ADC library initialization |
|
#endif // CONFIG_ADC |
|
|
|
barometer.init(&timer_scheduler); |
|
|
|
#endif // HIL_MODE |
|
|
|
// Do GPS init |
|
g_gps = &g_gps_driver; |
|
g_gps->init(); // GPS Initialization |
|
g_gps->callback = mavlink_delay; |
|
|
|
if(g.compass_enabled) |
|
init_compass(); |
|
|
|
// init the optical flow sensor |
|
if(g.optflow_enabled) { |
|
init_optflow(); |
|
} |
|
|
|
|
|
// agmatthews USERHOOKS |
|
#ifdef USERHOOK_INIT |
|
USERHOOK_INIT |
|
#endif |
|
|
|
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED |
|
// If the switch is in 'menu' mode, run the main menu. |
|
// |
|
// Since we can't be sure that the setup or test mode won't leave |
|
// the system in an odd state, we don't let the user exit the top |
|
// menu; they must reset in order to fly. |
|
// |
|
if (check_startup_for_CLI()) { |
|
digitalWrite(A_LED_PIN, LED_ON); // turn on setup-mode LED |
|
Serial.printf_P(PSTR("\nCLI:\n\n")); |
|
run_cli(); |
|
} |
|
#else |
|
Serial.printf_P(PSTR("\nPress ENTER 3 times for CLI\n\n")); |
|
#endif // CLI_ENABLED |
|
|
|
GPS_enabled = false; |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
// Read in the GPS |
|
for (byte counter = 0; ; counter++) { |
|
g_gps->update(); |
|
if (g_gps->status() != 0){ |
|
GPS_enabled = true; |
|
break; |
|
} |
|
|
|
if (counter >= 2) { |
|
GPS_enabled = false; |
|
break; |
|
} |
|
} |
|
#else |
|
GPS_enabled = true; |
|
#endif |
|
|
|
// lengthen the idle timeout for gps Auto_detect |
|
// --------------------------------------------- |
|
g_gps->idleTimeout = 20000; |
|
|
|
// print the GPS status |
|
// -------------------- |
|
report_gps(); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
// read Baro pressure at ground |
|
//----------------------------- |
|
init_barometer(); |
|
#endif |
|
|
|
// initialise sonar |
|
#if CONFIG_SONAR == ENABLED |
|
init_sonar(); |
|
#endif |
|
|
|
// initialize commands |
|
// ------------------- |
|
init_commands(); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
#if QUATERNION_ENABLE == DISABLED |
|
dcm.kp_roll_pitch(0.130000); |
|
dcm.ki_roll_pitch(0.00001278), // 50 hz I term |
|
dcm.kp_yaw(0.12); |
|
dcm.ki_yaw(0.00002); |
|
dcm._clamp = 5; |
|
#endif |
|
#endif |
|
|
|
// init the Z damopener |
|
// -------------------- |
|
#if ACCEL_ALT_HOLD != 0 |
|
init_z_damper(); |
|
#endif |
|
|
|
|
|
startup_ground(); |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
Log_Write_Startup(); |
|
Log_Write_Data(10, (float)g.pi_stabilize_roll.kP()); |
|
Log_Write_Data(11, (float)g.pi_stabilize_roll.kI()); |
|
|
|
Log_Write_Data(12, (float)g.pid_rate_roll.kP()); |
|
Log_Write_Data(13, (float)g.pid_rate_roll.kI()); |
|
Log_Write_Data(14, (float)g.pid_rate_roll.kD()); |
|
Log_Write_Data(15, (float)g.stabilize_d.get()); |
|
|
|
Log_Write_Data(16, (float)g.pi_loiter_lon.kP()); |
|
Log_Write_Data(17, (float)g.pi_loiter_lon.kI()); |
|
|
|
Log_Write_Data(18, (float)g.pid_nav_lon.kP()); |
|
Log_Write_Data(19, (float)g.pid_nav_lon.kI()); |
|
Log_Write_Data(20, (float)g.pid_nav_lon.kD()); |
|
|
|
Log_Write_Data(21, (int32_t)g.auto_slew_rate.get()); |
|
|
|
Log_Write_Data(22, (float)g.pid_loiter_rate_lon.kP()); |
|
Log_Write_Data(23, (float)g.pid_loiter_rate_lon.kI()); |
|
Log_Write_Data(24, (float)g.pid_loiter_rate_lon.kD()); |
|
#endif |
|
|
|
SendDebug("\nReady to FLY "); |
|
} |
|
|
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
static void startup_ground(void) |
|
{ |
|
gcs_send_text_P(SEVERITY_LOW,PSTR("GROUND START")); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
// Warm up and read Gyro offsets |
|
// ----------------------------- |
|
imu.init(IMU::COLD_START, mavlink_delay, flash_leds, &timer_scheduler); |
|
#if CLI_ENABLED == ENABLED |
|
report_imu(); |
|
#endif |
|
#endif |
|
|
|
// reset the leds |
|
// --------------------------- |
|
clear_leds(); |
|
|
|
// when we re-calibrate the gyros, |
|
// all previous I values are invalid |
|
reset_I_all(); |
|
} |
|
|
|
/* |
|
#define YAW_HOLD 0 |
|
#define YAW_ACRO 1 |
|
#define YAW_AUTO 2 |
|
#define YAW_LOOK_AT_HOME 3 |
|
|
|
#define ROLL_PITCH_STABLE 0 |
|
#define ROLL_PITCH_ACRO 1 |
|
#define ROLL_PITCH_AUTO 2 |
|
|
|
#define THROTTLE_MANUAL 0 |
|
#define THROTTLE_HOLD 1 |
|
#define THROTTLE_AUTO 2 |
|
|
|
*/ |
|
|
|
static void set_mode(byte mode) |
|
{ |
|
// if we don't have GPS lock |
|
if(home_is_set == false){ |
|
// our max mode should be |
|
if (mode > ALT_HOLD && mode != OF_LOITER) |
|
mode = STABILIZE; |
|
} |
|
|
|
// nothing but OF_LOITER for OptFlow only |
|
if (g.optflow_enabled && GPS_enabled == false){ |
|
if (mode > ALT_HOLD && mode != OF_LOITER) |
|
mode = STABILIZE; |
|
} |
|
|
|
old_control_mode = control_mode; |
|
control_mode = mode; |
|
control_mode = constrain(control_mode, 0, NUM_MODES - 1); |
|
|
|
// used to stop fly_aways |
|
motor_auto_armed = (g.rc_3.control_in > 0); |
|
|
|
// clearing value used in interactive alt hold |
|
manual_boost = 0; |
|
|
|
// clearing value used to force the copter down in landing mode |
|
landing_boost = 0; |
|
|
|
// do we want to come to a stop or pass a WP? |
|
slow_wp = false; |
|
|
|
// do not auto_land if we are leaving RTL |
|
auto_land_timer = 0; |
|
|
|
// if we change modes, we must clear landed flag |
|
land_complete = false; |
|
|
|
// debug to Serial terminal |
|
//Serial.println(flight_mode_strings[control_mode]); |
|
|
|
// report the GPS and Motor arming status |
|
led_mode = NORMAL_LEDS; |
|
|
|
switch(control_mode) |
|
{ |
|
case ACRO: |
|
yaw_mode = YAW_HOLD; |
|
roll_pitch_mode = ROLL_PITCH_ACRO; |
|
throttle_mode = THROTTLE_MANUAL; |
|
break; |
|
|
|
case STABILIZE: |
|
yaw_mode = YAW_HOLD; |
|
roll_pitch_mode = ROLL_PITCH_STABLE; |
|
throttle_mode = THROTTLE_MANUAL; |
|
break; |
|
|
|
case ALT_HOLD: |
|
yaw_mode = ALT_HOLD_YAW; |
|
roll_pitch_mode = ALT_HOLD_RP; |
|
throttle_mode = ALT_HOLD_THR; |
|
|
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
case AUTO: |
|
yaw_mode = AUTO_YAW; |
|
roll_pitch_mode = AUTO_RP; |
|
throttle_mode = AUTO_THR; |
|
|
|
// loads the commands from where we left off |
|
init_commands(); |
|
break; |
|
|
|
case CIRCLE: |
|
yaw_mode = CIRCLE_YAW; |
|
roll_pitch_mode = CIRCLE_RP; |
|
throttle_mode = CIRCLE_THR; |
|
set_next_WP(¤t_loc); |
|
circle_angle = 0; |
|
break; |
|
|
|
case LOITER: |
|
yaw_mode = LOITER_YAW; |
|
roll_pitch_mode = LOITER_RP; |
|
throttle_mode = LOITER_THR; |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
case POSITION: |
|
yaw_mode = YAW_HOLD; |
|
roll_pitch_mode = ROLL_PITCH_AUTO; |
|
throttle_mode = THROTTLE_MANUAL; |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
case GUIDED: |
|
yaw_mode = YAW_AUTO; |
|
roll_pitch_mode = ROLL_PITCH_AUTO; |
|
throttle_mode = THROTTLE_AUTO; |
|
next_WP = current_loc; |
|
set_next_WP(&guided_WP); |
|
break; |
|
|
|
case LAND: |
|
yaw_mode = LOITER_YAW; |
|
roll_pitch_mode = LOITER_RP; |
|
throttle_mode = THROTTLE_AUTO; |
|
do_land(); |
|
break; |
|
|
|
case RTL: |
|
yaw_mode = RTL_YAW; |
|
roll_pitch_mode = RTL_RP; |
|
throttle_mode = RTL_THR; |
|
|
|
do_RTL(); |
|
break; |
|
|
|
case OF_LOITER: |
|
yaw_mode = OF_LOITER_YAW; |
|
roll_pitch_mode = OF_LOITER_RP; |
|
throttle_mode = OF_LOITER_THR; |
|
set_next_WP(¤t_loc); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
if(failsafe){ |
|
// this is to allow us to fly home without interactive throttle control |
|
throttle_mode = THROTTLE_AUTO; |
|
// does not wait for us to be in high throttle, since the |
|
// Receiver will be outputting low throttle |
|
motor_auto_armed = true; |
|
} |
|
|
|
// called to calculate gain for alt hold |
|
update_throttle_cruise(); |
|
|
|
if(roll_pitch_mode <= ROLL_PITCH_ACRO){ |
|
// We are under manual attitude control |
|
// remove the navigation from roll and pitch command |
|
reset_nav_params(); |
|
// remove the wind compenstaion |
|
reset_wind_I(); |
|
// Clears the WP navigation speed compensation |
|
reset_nav_I(); |
|
// Clears the alt hold compensation |
|
reset_throttle_I(); |
|
} |
|
|
|
Log_Write_Mode(control_mode); |
|
} |
|
|
|
static void set_failsafe(boolean mode) |
|
{ |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe != mode){ |
|
|
|
// store the value so we don't trip the gate twice |
|
// ----------------------------------------------- |
|
failsafe = mode; |
|
|
|
if (failsafe == false){ |
|
// We've regained radio contact |
|
// ---------------------------- |
|
failsafe_off_event(); |
|
|
|
}else{ |
|
// We've lost radio contact |
|
// ------------------------ |
|
failsafe_on_event(); |
|
} |
|
} |
|
} |
|
|
|
static void |
|
init_simple_bearing() |
|
{ |
|
initial_simple_bearing = dcm.yaw_sensor; |
|
} |
|
|
|
static void update_throttle_cruise() |
|
{ |
|
int16_t tmp = g.pi_alt_hold.get_integrator(); |
|
if(tmp != 0){ |
|
g.throttle_cruise += tmp; |
|
reset_throttle_I(); |
|
} |
|
|
|
// recalc kp |
|
g.pid_throttle.kP((float)g.throttle_cruise.get() / 981.0); |
|
//Serial.printf("kp:%1.4f\n",kp); |
|
} |
|
|
|
#if CLI_SLIDER_ENABLED == ENABLED && CLI_ENABLED == ENABLED |
|
static boolean |
|
check_startup_for_CLI() |
|
{ |
|
return (digitalRead(SLIDE_SWITCH_PIN) == 0); |
|
} |
|
#endif // CLI_ENABLED |
|
|
|
/* |
|
map from a 8 bit EEPROM baud rate to a real baud rate |
|
*/ |
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) |
|
{ |
|
switch (rate) { |
|
case 1: return 1200; |
|
case 2: return 2400; |
|
case 4: return 4800; |
|
case 9: return 9600; |
|
case 19: return 19200; |
|
case 38: return 38400; |
|
case 57: return 57600; |
|
case 111: return 111100; |
|
case 115: return 115200; |
|
} |
|
//Serial.println_P(PSTR("Invalid SERIAL3_BAUD")); |
|
return default_baud; |
|
} |
|
|
|
#if USB_MUX_PIN > 0 |
|
static void check_usb_mux(void) |
|
{ |
|
bool usb_check = !digitalRead(USB_MUX_PIN); |
|
if (usb_check == usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
usb_connected = usb_check; |
|
if (usb_connected) { |
|
Serial.begin(SERIAL0_BAUD, 128, 128); |
|
} else { |
|
Serial.begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128); |
|
} |
|
} |
|
#endif |
|
|
|
/* |
|
called by gyro/accel init to flash LEDs so user |
|
has some mesmerising lights to watch while waiting |
|
*/ |
|
void flash_leds(bool on) |
|
{ |
|
digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON); |
|
digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF); |
|
} |
|
|
|
#ifndef DESKTOP_BUILD |
|
/* |
|
* Read Vcc vs 1.1v internal reference |
|
* |
|
* This call takes about 150us total. ADC conversion is 13 cycles of |
|
* 125khz default changes the mux if it isn't set, and return last |
|
* reading (allows necessary settle time) otherwise trigger the |
|
* conversion |
|
*/ |
|
uint16_t board_voltage(void) |
|
{ |
|
const uint8_t mux = (_BV(REFS0)|_BV(MUX4)|_BV(MUX3)|_BV(MUX2)|_BV(MUX1)); |
|
|
|
if (ADMUX == mux) { |
|
ADCSRA |= _BV(ADSC); // Convert |
|
uint16_t counter=4000; // normally takes about 1700 loops |
|
while (bit_is_set(ADCSRA, ADSC) && counter) // Wait |
|
counter--; |
|
if (counter == 0) { |
|
// we don't actually expect this timeout to happen, |
|
// but we don't want any more code that could hang. We |
|
// report 0V so it is clear in the logs that we don't know |
|
// the value |
|
return 0; |
|
} |
|
uint32_t result = ADCL | ADCH<<8; |
|
return 1126400UL / result; // Read and back-calculate Vcc in mV |
|
} |
|
// switch mux, settle time is needed. We don't want to delay |
|
// waiting for the settle, so report 0 as a "don't know" value |
|
ADMUX = mux; |
|
return 0; // we don't know the current voltage |
|
} |
|
#endif
|
|
|