You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.3 KiB
130 lines
4.3 KiB
#include "AP_Compass_SITL.h" |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL |
|
extern const AP_HAL::HAL& hal; |
|
|
|
AP_Compass_SITL::AP_Compass_SITL() |
|
: _sitl(AP::sitl()) |
|
{ |
|
if (_sitl != nullptr) { |
|
_compass._setup_earth_field(); |
|
for (uint8_t i=0; i<SITL_NUM_COMPASSES; i++) { |
|
// default offsets to correct value |
|
if (_compass.get_offsets(i).is_zero()) { |
|
_compass.set_offsets(i, _sitl->mag_ofs); |
|
} |
|
|
|
_compass_instance[i] = register_compass(); |
|
set_dev_id(_compass_instance[i], AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, i, 0, DEVTYPE_SITL)); |
|
|
|
// save so the compass always comes up configured in SITL |
|
save_dev_id(_compass_instance[i]); |
|
} |
|
|
|
// make first compass external |
|
set_external(_compass_instance[0], true); |
|
|
|
hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Compass_SITL::_timer, void)); |
|
} |
|
} |
|
|
|
|
|
/* |
|
create correction matrix for diagnonals and off-diagonals |
|
*/ |
|
void AP_Compass_SITL::_setup_eliptical_correcion(void) |
|
{ |
|
Vector3f diag = _sitl->mag_diag.get(); |
|
if (diag.is_zero()) { |
|
diag(1,1,1); |
|
} |
|
const Vector3f &diagonals = diag; |
|
const Vector3f &offdiagonals = _sitl->mag_offdiag; |
|
|
|
if (diagonals == _last_dia && offdiagonals == _last_odi) { |
|
return; |
|
} |
|
|
|
_eliptical_corr = Matrix3f(diagonals.x, offdiagonals.x, offdiagonals.y, |
|
offdiagonals.x, diagonals.y, offdiagonals.z, |
|
offdiagonals.y, offdiagonals.z, diagonals.z); |
|
if (!_eliptical_corr.invert()) { |
|
_eliptical_corr.identity(); |
|
} |
|
_last_dia = diag; |
|
_last_odi = offdiagonals; |
|
} |
|
|
|
void AP_Compass_SITL::_timer() |
|
{ |
|
// TODO: Refactor delay buffer with AP_Baro_SITL. |
|
|
|
// Sampled at 100Hz |
|
uint32_t now = AP_HAL::millis(); |
|
if ((now - _last_sample_time) < 10) { |
|
return; |
|
} |
|
_last_sample_time = now; |
|
|
|
// calculate sensor noise and add to 'truth' field in body frame |
|
// units are milli-Gauss |
|
Vector3f noise = rand_vec3f() * _sitl->mag_noise; |
|
Vector3f new_mag_data = _sitl->state.bodyMagField + noise; |
|
|
|
// add delay |
|
uint32_t best_time_delta = 1000; // initialise large time representing buffer entry closest to current time - delay. |
|
uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay. |
|
|
|
// storing data from sensor to buffer |
|
if (now - last_store_time >= 10) { // store data every 10 ms. |
|
last_store_time = now; |
|
if (store_index > buffer_length-1) { // reset buffer index if index greater than size of buffer |
|
store_index = 0; |
|
} |
|
buffer[store_index].data = new_mag_data; // add data to current index |
|
buffer[store_index].time = last_store_time; // add time to current index |
|
store_index = store_index + 1; // increment index |
|
} |
|
|
|
// return delayed measurement |
|
uint32_t delayed_time = now - _sitl->mag_delay; // get time corresponding to delay |
|
// find data corresponding to delayed time in buffer |
|
for (uint8_t i=0; i<=buffer_length-1; i++) { |
|
// find difference between delayed time and time stamp in buffer |
|
uint32_t time_delta = abs((int32_t)(delayed_time - buffer[i].time)); |
|
// if this difference is smaller than last delta, store this time |
|
if (time_delta < best_time_delta) { |
|
best_index= i; |
|
best_time_delta = time_delta; |
|
} |
|
} |
|
if (best_time_delta < 1000) { // only output stored state if < 1 sec retrieval error |
|
new_mag_data = buffer[best_index].data; |
|
} |
|
|
|
_setup_eliptical_correcion(); |
|
|
|
new_mag_data = _eliptical_corr * new_mag_data; |
|
new_mag_data -= _sitl->mag_ofs.get(); |
|
|
|
for (uint8_t i=0; i<SITL_NUM_COMPASSES; i++) { |
|
Vector3f f = new_mag_data; |
|
if (i == 0) { |
|
// rotate the first compass, allowing for testing of external compass rotation |
|
f.rotate_inverse((enum Rotation)_sitl->mag_orient.get()); |
|
f.rotate(get_board_orientation()); |
|
} |
|
|
|
accumulate_sample(f, _compass_instance[i], 10); |
|
} |
|
} |
|
|
|
void AP_Compass_SITL::read() |
|
{ |
|
for (uint8_t i=0; i<SITL_NUM_COMPASSES; i++) { |
|
drain_accumulated_samples(_compass_instance[i], nullptr); |
|
} |
|
} |
|
#endif
|
|
|