You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
432 lines
10 KiB
432 lines
10 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
static int |
|
get_stabilize_roll(int32_t target_angle) |
|
{ |
|
int32_t error; |
|
int32_t rate; |
|
int32_t current_rate; |
|
|
|
int16_t rate_d1 = 0; |
|
static int16_t rate_d2 = 0; |
|
static int16_t rate_d3 = 0; |
|
static int32_t last_rate = 0; |
|
|
|
current_rate = (omega.x * DEGX100); |
|
|
|
// playing with double derivatives. |
|
// History of last 3 dir |
|
rate_d3 = rate_d2; |
|
rate_d2 = rate_d1; |
|
rate_d1 = current_rate - last_rate; |
|
last_rate = current_rate; |
|
|
|
// angle error |
|
error = wrap_180(target_angle - dcm.roll_sensor); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
rate = g.pi_stabilize_roll.get_pi(error, G_Dt); |
|
|
|
// output control: |
|
rate = constrain(rate, -4500, 4500); |
|
return (int)rate; |
|
#else |
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -2500, 2500); |
|
|
|
// conver to desired Rate: |
|
rate = g.pi_stabilize_roll.get_p(error); |
|
|
|
// experiment to pipe iterm directly into the output |
|
int16_t iterm = g.pi_stabilize_roll.get_i(error, G_Dt); |
|
|
|
// rate control |
|
error = rate - current_rate; |
|
rate = g.pi_rate_roll.get_pi(error, G_Dt); |
|
|
|
// D term |
|
// I had tried this before with little result. Recently, someone mentioned to me that |
|
// MultiWii uses a filter of the last three to get around noise and get a stronger signal. |
|
// Works well! Thanks! |
|
int16_t d_temp = (rate_d1 + rate_d2 + rate_d3) * g.stablize_d; |
|
|
|
rate -= d_temp; |
|
|
|
// output control: |
|
rate = constrain(rate, -2500, 2500); |
|
return (int)rate + iterm; |
|
#endif |
|
} |
|
|
|
static int |
|
get_stabilize_pitch(int32_t target_angle) |
|
{ |
|
int32_t error; |
|
int32_t rate; |
|
int32_t current_rate; |
|
|
|
int16_t rate_d1 = 0; |
|
static int16_t rate_d2 = 0; |
|
static int16_t rate_d3 = 0; |
|
static int32_t last_rate = 0; |
|
|
|
current_rate = (omega.y * DEGX100); |
|
|
|
// playing with double derivatives. |
|
// History of last 3 dir |
|
rate_d3 = rate_d2; |
|
rate_d2 = rate_d1; |
|
rate_d1 = current_rate - last_rate; |
|
last_rate = current_rate; |
|
|
|
// angle error |
|
error = wrap_180(target_angle - dcm.pitch_sensor); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -4500, 4500); |
|
|
|
// convert to desired Rate: |
|
rate = g.pi_stabilize_pitch.get_pi(error, G_Dt); |
|
|
|
// output control: |
|
rate = constrain(rate, -4500, 4500); |
|
return (int)rate; |
|
#else |
|
// angle error |
|
error = constrain(error, -2500, 2500); |
|
|
|
// conver to desired Rate: |
|
rate = g.pi_stabilize_pitch.get_p(error); |
|
|
|
// experiment to pipe iterm directly into the output |
|
int16_t iterm = g.pi_stabilize_pitch.get_i(error, G_Dt); |
|
|
|
// rate control |
|
error = rate - (omega.y * DEGX100); |
|
rate = g.pi_rate_pitch.get_pi(error, G_Dt); |
|
|
|
// D term testing |
|
int16_t d_temp = (rate_d1 + rate_d2 + rate_d3) * g.stablize_d; |
|
|
|
rate -= d_temp; |
|
|
|
// output control: |
|
rate = constrain(rate, -2500, 2500); |
|
return (int)rate + iterm; |
|
#endif |
|
} |
|
|
|
|
|
#define YAW_ERROR_MAX 2000 |
|
static int |
|
get_stabilize_yaw(int32_t target_angle) |
|
{ |
|
int32_t error; |
|
int32_t rate; |
|
|
|
// angle error |
|
error = wrap_180(target_angle - dcm.yaw_sensor); |
|
|
|
// limit the error we're feeding to the PID |
|
error = constrain(error, -YAW_ERROR_MAX, YAW_ERROR_MAX); |
|
|
|
// convert to desired Rate: |
|
rate = g.pi_stabilize_yaw.get_p(error); |
|
|
|
// experiment to pipe iterm directly into the output |
|
int16_t iterm = g.pi_stabilize_yaw.get_i(error, G_Dt); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME // cannot use rate control for helicopters |
|
if( !g.heli_ext_gyro_enabled ) { |
|
error = rate - (omega.z * DEGX100); |
|
rate = g.pi_rate_yaw.get_pi(error, G_Dt); |
|
} |
|
// output control: |
|
rate = constrain(rate, -4500, 4500); |
|
#else |
|
error = rate - (omega.z * DEGX100); |
|
rate = g.pi_rate_yaw.get_pi(error, G_Dt); |
|
|
|
// output control: |
|
int16_t yaw_input = 1400 + abs(g.rc_4.control_in); |
|
// smoother Yaw control: |
|
rate = constrain(rate, -yaw_input, yaw_input); |
|
#endif |
|
|
|
return (int)rate + iterm; |
|
} |
|
|
|
#define ALT_ERROR_MAX 400 |
|
static int16_t |
|
get_nav_throttle(int32_t z_error) |
|
{ |
|
static int16_t old_output = 0; |
|
|
|
int16_t rate_error; |
|
int16_t output; |
|
|
|
// XXX HACK, need a better way not to ramp this i term in large altitude changes. |
|
float dt = (abs(z_error) < 400) ? .1 : 0.0; |
|
|
|
// limit error to prevent I term run up |
|
z_error = constrain(z_error, -ALT_ERROR_MAX, ALT_ERROR_MAX); |
|
|
|
// convert to desired Rate: |
|
rate_error = g.pi_alt_hold.get_p(z_error); //_p = .85 |
|
|
|
// experiment to pipe iterm directly into the output |
|
int16_t iterm = g.pi_alt_hold.get_i(z_error, dt); |
|
|
|
// calculate rate error |
|
rate_error = rate_error - climb_rate; |
|
|
|
// limit the rate - iterm is not used |
|
output = constrain((int)g.pi_throttle.get_p(rate_error), -160, 180); |
|
|
|
// light filter of output |
|
output = (old_output * 3 + output) / 4; |
|
|
|
// save our output |
|
old_output = output; |
|
|
|
// output control: |
|
return output + iterm; |
|
} |
|
|
|
static int |
|
get_rate_roll(int32_t target_rate) |
|
{ |
|
int32_t error = (target_rate * 3.5) - (omega.x * DEGX100); |
|
error = constrain(error, -20000, 20000); |
|
return g.pi_acro_roll.get_pi(error, G_Dt); |
|
} |
|
|
|
static int |
|
get_rate_pitch(int32_t target_rate) |
|
{ |
|
int32_t error = (target_rate * 3.5) - (omega.y * DEGX100); |
|
error = constrain(error, -20000, 20000); |
|
return g.pi_acro_pitch.get_pi(error, G_Dt); |
|
} |
|
|
|
static int |
|
get_rate_yaw(int32_t target_rate) |
|
{ |
|
|
|
int32_t error = (target_rate * 4.5) - (omega.z * DEGX100); |
|
target_rate = g.pi_rate_yaw.get_pi(error, G_Dt); |
|
|
|
// output control: |
|
return (int)constrain(target_rate, -2500, 2500); |
|
} |
|
|
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. |
|
// Keeps outdated data out of our calculations |
|
static void reset_hold_I(void) |
|
{ |
|
g.pi_loiter_lat.reset_I(); |
|
g.pi_loiter_lon.reset_I(); |
|
} |
|
|
|
// Keeps old data out of our calculation / logs |
|
static void reset_nav(void) |
|
{ |
|
invalid_throttle = true; |
|
nav_throttle = 0; |
|
circle_angle = 0; |
|
crosstrack_error = 0; |
|
target_bearing = 0; |
|
wp_distance = 0; |
|
long_error = 0; |
|
lat_error = 0; |
|
} |
|
|
|
static void reset_rate_I() |
|
{ |
|
// balances the quad |
|
g.pi_stabilize_roll.reset_I(); |
|
g.pi_stabilize_pitch.reset_I(); |
|
|
|
// compensates rate error |
|
g.pi_rate_roll.reset_I(); |
|
g.pi_rate_pitch.reset_I(); |
|
g.pi_acro_roll.reset_I(); |
|
g.pi_acro_pitch.reset_I(); |
|
} |
|
|
|
|
|
/************************************************************* |
|
throttle control |
|
****************************************************************/ |
|
|
|
static long |
|
get_nav_yaw_offset(int yaw_input, int reset) |
|
{ |
|
int32_t _yaw; |
|
|
|
if(reset == 0){ |
|
// we are on the ground |
|
return dcm.yaw_sensor; |
|
|
|
}else{ |
|
// re-define nav_yaw if we have stick input |
|
if(yaw_input != 0){ |
|
// set nav_yaw + or - the current location |
|
_yaw = yaw_input + dcm.yaw_sensor; |
|
// we need to wrap our value so we can be 0 to 360 (*100) |
|
return wrap_360(_yaw); |
|
|
|
}else{ |
|
// no stick input, lets not change nav_yaw |
|
return nav_yaw; |
|
} |
|
} |
|
} |
|
|
|
static int get_angle_boost(int value) |
|
{ |
|
float temp = cos_pitch_x * cos_roll_x; |
|
temp = 1.0 - constrain(temp, .5, 1.0); |
|
return (int)(temp * value); |
|
} |
|
|
|
#define NUM_G_SAMPLES 40 |
|
|
|
#if ACCEL_ALT_HOLD == 2 |
|
// z -14.4306 = going up |
|
// z -6.4306 = going down |
|
static int get_z_damping() |
|
{ |
|
int output; |
|
|
|
Z_integrator += get_world_Z_accel() - Z_offset; |
|
output = Z_integrator * 3; |
|
Z_integrator = Z_integrator * .8; |
|
output = constrain(output, -100, 100); |
|
return output; |
|
} |
|
|
|
float get_world_Z_accel() |
|
{ |
|
accels_rot = dcm.get_dcm_matrix() * imu.get_accel(); |
|
//Serial.printf("z %1.4f\n", accels_rot.z); |
|
return accels_rot.z; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
Z_offset = 0; |
|
for (int i = 0; i < NUM_G_SAMPLES; i++){ |
|
delay(5); |
|
read_AHRS(); |
|
Z_offset += get_world_Z_accel(); |
|
} |
|
Z_offset /= (float)NUM_G_SAMPLES; |
|
} |
|
|
|
|
|
|
|
|
|
// Accelerometer Z dampening by Aurelio R. Ramos |
|
// --------------------------------------------- |
|
#elif ACCEL_ALT_HOLD == 1 |
|
|
|
// contains G and any other DC offset |
|
static float estimatedAccelOffset = 0; |
|
|
|
// state |
|
static float synVelo = 0; |
|
static float synPos = 0; |
|
static float synPosFiltered = 0; |
|
static float posError = 0; |
|
static float prevSensedPos = 0; |
|
|
|
// tuning for dead reckoning |
|
static const float dt_50hz = 0.02; |
|
static float synPosP = 10 * dt_50hz; |
|
static float synPosI = 15 * dt_50hz; |
|
static float synVeloP = 1.5 * dt_50hz; |
|
static float maxVeloCorrection = 5 * dt_50hz; |
|
static float maxSensedVelo = 1; |
|
static float synPosFilter = 0.5; |
|
|
|
|
|
// Z damping term. |
|
static float fullDampP = 0.100; |
|
|
|
float get_world_Z_accel() |
|
{ |
|
accels_rot = dcm.get_dcm_matrix() * imu.get_accel(); |
|
return accels_rot.z; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
estimatedAccelOffset = 0; |
|
for (int i = 0; i < NUM_G_SAMPLES; i++){ |
|
delay(5); |
|
read_AHRS(); |
|
estimatedAccelOffset += get_world_Z_accel(); |
|
} |
|
estimatedAccelOffset /= (float)NUM_G_SAMPLES; |
|
} |
|
|
|
float dead_reckon_Z(float sensedPos, float sensedAccel) |
|
{ |
|
// the following algorithm synthesizes position and velocity from |
|
// a noisy altitude and accelerometer data. |
|
|
|
// synthesize uncorrected velocity by integrating acceleration |
|
synVelo += (sensedAccel - estimatedAccelOffset) * dt_50hz; |
|
|
|
// synthesize uncorrected position by integrating uncorrected velocity |
|
synPos += synVelo * dt_50hz; |
|
|
|
// filter synPos, the better this filter matches the filtering and dead time |
|
// of the sensed position, the less the position estimate will lag. |
|
synPosFiltered = synPosFiltered * (1 - synPosFilter) + synPos * synPosFilter; |
|
|
|
// calculate error against sensor position |
|
posError = sensedPos - synPosFiltered; |
|
|
|
// correct altitude |
|
synPos += synPosP * posError; |
|
|
|
// correct integrated velocity by posError |
|
synVelo = synVelo + constrain(posError, -maxVeloCorrection, maxVeloCorrection) * synPosI; |
|
|
|
// correct integrated velocity by the sensed position delta in a small proportion |
|
// (i.e., the low frequency of the delta) |
|
float sensedVelo = (sensedPos - prevSensedPos) / dt_50hz; |
|
synVelo += constrain(sensedVelo - synVelo, -maxSensedVelo, maxSensedVelo) * synVeloP; |
|
|
|
prevSensedPos = sensedPos; |
|
return synVelo; |
|
} |
|
|
|
static int get_z_damping() |
|
{ |
|
float sensedAccel = get_world_Z_accel(); |
|
float sensedPos = current_loc.alt / 100.0; |
|
|
|
float synVelo = dead_reckon_Z(sensedPos, sensedAccel); |
|
return constrain(fullDampP * synVelo * (-1), -300, 300); |
|
} |
|
|
|
#else |
|
|
|
static int get_z_damping() |
|
{ |
|
return 0; |
|
} |
|
|
|
static void init_z_damper() |
|
{ |
|
} |
|
#endif |