You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
293 lines
11 KiB
293 lines
11 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsSingle.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include <AP_Math.h> |
|
#include "AP_MotorsSingle.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
|
|
const AP_Param::GroupInfo AP_MotorsSingle::var_info[] PROGMEM = { |
|
// 0 was used by TB_RATIO |
|
// 1,2,3 were used by throttle curve |
|
|
|
// @Param: SPIN_ARMED |
|
// @DisplayName: Motors always spin when armed |
|
// @Description: Controls whether motors always spin when armed (must be below THR_MIN) |
|
// @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast |
|
// @User: Standard |
|
AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsSingle, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED), |
|
|
|
// @Param: REV_ROLL |
|
// @DisplayName: Reverse roll feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Opposite direction,1:Same direction |
|
AP_GROUPINFO("REV_ROLL", 6, AP_MotorsSingle, _rev_roll, AP_MOTORS_SING_POSITIVE), |
|
|
|
// @Param: REV_PITCH |
|
// @DisplayName: Reverse pitch feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Opposite direction,1:Same direction |
|
AP_GROUPINFO("REV_PITCH", 7, AP_MotorsSingle, _rev_pitch, AP_MOTORS_SING_POSITIVE), |
|
|
|
// @Param: REV_YAW |
|
// @DisplayName: Reverse yaw feedback |
|
// @Description: Ensure the feedback is negative |
|
// @Values: -1:Opposite direction,1:Same direction |
|
AP_GROUPINFO("REV_YAW", 8, AP_MotorsSingle, _rev_yaw, AP_MOTORS_SING_POSITIVE), |
|
|
|
// @Param: SV_SPEED |
|
// @DisplayName: Servo speed |
|
// @Description: Servo update speed in hz |
|
// @Values: 50, 125, 250 |
|
AP_GROUPINFO("SV_SPEED", 9, AP_MotorsSingle, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS), |
|
|
|
AP_GROUPEND |
|
}; |
|
// init |
|
void AP_MotorsSingle::Init() |
|
{ |
|
// call parent Init function to set-up throttle curve |
|
AP_Motors::Init(); |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
set_update_rate(_speed_hz); |
|
|
|
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types |
|
motor_enabled[AP_MOTORS_MOT_7] = true; |
|
|
|
// we set four servos to angle |
|
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE); |
|
_servo1.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); |
|
_servo2.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); |
|
_servo3.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); |
|
_servo4.set_angle(AP_MOTORS_SINGLE_SERVO_INPUT_RANGE); |
|
|
|
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc) |
|
RC_Channel_aux::disable_aux_channel(CH_7); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsSingle::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// set update rate for the 3 motors (but not the servo on channel 7) |
|
uint32_t mask = |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) | |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) | |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) | |
|
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ; |
|
hal.rcout->set_freq(mask, _servo_speed); |
|
uint32_t mask2 = 1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]); |
|
hal.rcout->set_freq(mask2, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsSingle::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); |
|
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7])); |
|
} |
|
|
|
// output_min - sends minimum values out to the motor and trim values to the servos |
|
void AP_MotorsSingle::output_min() |
|
{ |
|
// send minimum value to each motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_trim); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), _rc_throttle.radio_min); |
|
} |
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) |
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict |
|
uint16_t AP_MotorsSingle::get_motor_mask() |
|
{ |
|
// single copter uses channels 1,2,3,4 and 7 |
|
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << 6); |
|
} |
|
|
|
void AP_MotorsSingle::output_armed_not_stabilizing() |
|
{ |
|
int16_t out_min = _rc_throttle.radio_min + _min_throttle; |
|
int16_t motor_out; |
|
|
|
int16_t min_thr = rel_pwm_to_thr_range(_spin_when_armed_ramped); |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
if (_rc_throttle.servo_out <= min_thr) { |
|
_rc_throttle.servo_out = min_thr; |
|
limit.throttle_lower = true; |
|
} |
|
if (_rc_throttle.servo_out >= _max_throttle) { |
|
_rc_throttle.servo_out = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
_rc_throttle.calc_pwm(); |
|
|
|
motor_out = _rc_throttle.radio_out; |
|
|
|
// front servo |
|
_servo1.servo_out = 0; |
|
// right servo |
|
_servo2.servo_out = 0; |
|
// rear servo |
|
_servo3.servo_out = 0; |
|
// left servo |
|
_servo4.servo_out = 0; |
|
|
|
_servo1.calc_pwm(); |
|
_servo2.calc_pwm(); |
|
_servo3.calc_pwm(); |
|
_servo4.calc_pwm(); |
|
|
|
if (motor_out >= out_min) { |
|
motor_out = apply_thrust_curve_and_volt_scaling(motor_out, out_min, _rc_throttle.radio_max); |
|
} |
|
|
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), motor_out); |
|
} |
|
|
|
// sends commands to the motors |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
void AP_MotorsSingle::output_armed_stabilizing() |
|
{ |
|
int16_t out_min = _rc_throttle.radio_min + _min_throttle; |
|
int16_t motor_out; // main motor output |
|
|
|
// initialize limits flags |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// Throttle is 0 to 1000 only |
|
if (_rc_throttle.servo_out <= _min_throttle) { |
|
_rc_throttle.servo_out = _min_throttle; |
|
limit.throttle_lower = true; |
|
} |
|
if (_rc_throttle.servo_out >= _max_throttle) { |
|
_rc_throttle.servo_out = _max_throttle; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// capture desired throttle from receiver |
|
_rc_throttle.calc_pwm(); |
|
|
|
//motor |
|
motor_out = _rc_throttle.radio_out; |
|
|
|
// adjust for thrust curve and voltage scaling |
|
motor_out = apply_thrust_curve_and_volt_scaling(motor_out, out_min, _rc_throttle.radio_max); |
|
|
|
// ensure motor doesn't drop below a minimum value and stop |
|
motor_out = max(motor_out, out_min); |
|
|
|
// TODO: set limits.roll_pitch and limits.yaw |
|
|
|
// front servo |
|
_servo1.servo_out = _rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out; |
|
// right servo |
|
_servo2.servo_out = _rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out; |
|
// rear servo |
|
_servo3.servo_out = -_rev_roll*_rc_roll.servo_out + _rev_yaw*_rc_yaw.servo_out; |
|
// left servo |
|
_servo4.servo_out = -_rev_pitch*_rc_pitch.servo_out + _rev_yaw*_rc_yaw.servo_out; |
|
|
|
_servo1.calc_pwm(); |
|
_servo2.calc_pwm(); |
|
_servo3.calc_pwm(); |
|
_servo4.calc_pwm(); |
|
|
|
// send output to each motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo3.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo4.radio_out); |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), motor_out); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsSingle::output_disarmed() |
|
{ |
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// output_test - spin a motor at the pwm value specified |
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame |
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 |
|
void AP_MotorsSingle::output_test(uint8_t motor_seq, int16_t pwm) |
|
{ |
|
// exit immediately if not armed |
|
if (!armed()) { |
|
return; |
|
} |
|
|
|
// output to motors and servos |
|
switch (motor_seq) { |
|
case 1: |
|
// flap servo 1 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm); |
|
break; |
|
case 2: |
|
// flap servo 2 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm); |
|
break; |
|
case 3: |
|
// flap servo 3 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm); |
|
break; |
|
case 4: |
|
// flap servo 4 |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm); |
|
break; |
|
case 5: |
|
// spin main motor |
|
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), pwm); |
|
break; |
|
default: |
|
// do nothing |
|
break; |
|
} |
|
}
|
|
|